Suppr超能文献

当前癌症免疫疗法的趋势:文献挖掘分析。

Current trends in cancer immunotherapy: a literature-mining analysis.

机构信息

Department of Radiotherapy/Oncology, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.

School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.

出版信息

Cancer Immunol Immunother. 2020 Dec;69(12):2425-2439. doi: 10.1007/s00262-020-02630-8. Epub 2020 Jun 15.

Abstract

Cancer immunotherapy is a rapidly growing field that is completely transforming oncology care. Mining this knowledge base for biomedically important information is becoming increasingly challenging, due to the expanding number of scientific publications, and the dynamic evolution of this subject with time. In this study, we have employed a literature-mining approach that was used to analyze the cancer immunotherapy-related publications listed in PubMed and quantify emerging trends. A total of 93,033 publications published in 5055 journals have been retrieved, and 141 meaningful topics have been identified, which were further classified into eight distinct categories. Statistical analysis indicates a mean annual increase in the number of published papers of approximately 8% in the last 20 years. The research topics that exhibited the highest trends included "immune checkpoint inhibitors," "tumor microenvironment," "HPV vaccination," "CAR T-cells," and "gene mutations/tumor profiling." The top identified cancer types included "lung," "colorectal," and "breast cancer," and a shift in popularity from hematological to solid tumors was observed. As regards clinical research, a transition from early phase clinical trials to randomized control trials was recorded, indicating that the field is entering a more advanced phase of development. Overall, this mining approach provided an unbiased analysis of the cancer immunotherapy literature in a time-conserving and scale-efficient manner.

摘要

癌症免疫疗法是一个快速发展的领域,正在彻底改变肿瘤学的治疗方法。由于科学出版物数量的不断增加,以及该领域随时间的动态发展,从这个知识库中挖掘与生物医学相关的重要信息变得越来越具有挑战性。在这项研究中,我们采用了一种文献挖掘方法,用于分析 PubMed 中列出的癌症免疫疗法相关出版物,并量化新出现的趋势。共检索到 5055 种期刊上发表的 93033 篇出版物,并确定了 141 个有意义的主题,这些主题进一步分为八个不同的类别。统计分析表明,在过去 20 年中,发表论文的年平均增长率约为 8%。表现出最高趋势的研究主题包括“免疫检查点抑制剂”、“肿瘤微环境”、“HPV 疫苗接种”、“CAR T 细胞”和“基因突变/肿瘤分析”。排名最高的癌症类型包括“肺癌”、“结直肠癌”和“乳腺癌”,并且从血液肿瘤到实体肿瘤的受欢迎程度发生了转变。就临床研究而言,从早期临床试验到随机对照试验的转变被记录下来,这表明该领域正在进入一个更先进的发展阶段。总体而言,这种挖掘方法以节省时间和高效的方式对癌症免疫疗法文献进行了无偏见的分析。

相似文献

1
Current trends in cancer immunotherapy: a literature-mining analysis.当前癌症免疫疗法的趋势:文献挖掘分析。
Cancer Immunol Immunother. 2020 Dec;69(12):2425-2439. doi: 10.1007/s00262-020-02630-8. Epub 2020 Jun 15.

引用本文的文献

7
Trends in the use of immunotherapy to treat soft tissue sarcoma.免疫疗法治疗软组织肉瘤的应用趋势。
Am J Surg. 2024 Oct;236:115794. doi: 10.1016/j.amjsurg.2024.115794. Epub 2024 Jun 5.

本文引用的文献

1
The Intriguing History of Cancer Immunotherapy.癌症免疫疗法的迷人历史。
Front Immunol. 2019 Dec 17;10:2965. doi: 10.3389/fimmu.2019.02965. eCollection 2019.
2
The 100 top-cited studies in cancer immunotherapy.癌症免疫治疗的 100 篇高被引研究。
Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):2282-2292. doi: 10.1080/21691401.2019.1623234.
3
A probabilistic semantic analysis of eHealth scientific literature.电子健康科学文献的概率语义分析。
J Telemed Telecare. 2020 Aug-Sep;26(7-8):414-432. doi: 10.1177/1357633X19846252. Epub 2019 May 12.
4
Trends in the global immuno-oncology landscape.全球免疫肿瘤学领域的发展趋势。
Nat Rev Drug Discov. 2018 Nov;17(11):783-784. doi: 10.1038/nrd.2018.167. Epub 2018 Oct 19.
5
Immuno-Oncology: Emerging Targets and Combination Therapies.免疫肿瘤学:新兴靶点与联合疗法
Front Oncol. 2018 Aug 23;8:315. doi: 10.3389/fonc.2018.00315. eCollection 2018.
8
Current status and future directions of cancer immunotherapy.癌症免疫疗法的现状与未来方向
J Cancer. 2018 Apr 19;9(10):1773-1781. doi: 10.7150/jca.24577. eCollection 2018.
9
Analyzing research trends on drug safety using topic modeling.运用主题建模分析药物安全研究趋势。
Expert Opin Drug Saf. 2018 Jun;17(6):629-636. doi: 10.1080/14740338.2018.1458838. Epub 2018 Apr 6.
10
Intratumoral immunotherapy: using the tumor as the remedy.瘤内免疫治疗:利用肿瘤作为治疗手段。
Ann Oncol. 2017 Dec 1;28(suppl_12):xii33-xii43. doi: 10.1093/annonc/mdx683.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验