Suppr超能文献

大规模数据库挖掘揭示了癌症免疫治疗的潜在趋势和未来方向。

Large-scale database mining reveals hidden trends and future directions for cancer immunotherapy.

作者信息

Kather Jakob Nikolas, Berghoff Anna Sophie, Ferber Dyke, Suarez-Carmona Meggy, Reyes-Aldasoro Constantino Carlos, Valous Nektarios A, Rojas-Moraleda Rodrigo, Jäger Dirk, Halama Niels

机构信息

Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.

Heidelberg Site, German Cancer Consortium (DKTK), Heidelberg, Germany.

出版信息

Oncoimmunology. 2018 Mar 29;7(7):e1444412. doi: 10.1080/2162402X.2018.1444412. eCollection 2018.

Abstract

Cancer immunotherapy has fundamentally changed the landscape of oncology in recent years and significant resources are invested into immunotherapy research. It is in the interests of researchers and clinicians to identify promising and less promising trends in this field in order to rationally allocate resources. This requires a quantitative large-scale analysis of cancer immunotherapy related databases. We developed a novel tool for text mining, statistical analysis and data visualization of scientific literature data. We used this tool to analyze 72002 cancer immunotherapy publications and 1469 clinical trials from public databases. All source codes are available under an open access license. The contribution of specific topics within the cancer immunotherapy field has markedly shifted over the years. We show that the focus is moving from cell-based therapy and vaccination towards checkpoint inhibitors, with these trends reaching statistical significance. Rapidly growing subfields include the combination of chemotherapy with checkpoint blockade. Translational studies have shifted from hematological and skin neoplasms to gastrointestinal and lung cancer and from tumor antigens and angiogenesis to tumor stroma and apoptosis. This work highlights the importance of unbiased large-scale database mining to assess trends in cancer research and cancer immunotherapy in particular. Researchers, clinicians and funding agencies should be aware of quantitative trends in the immunotherapy field, allocate resources to the most promising areas and find new approaches for currently immature topics.

摘要

近年来,癌症免疫疗法从根本上改变了肿瘤学的格局,大量资源被投入到免疫疗法研究中。为了合理分配资源,识别该领域有前景和不太有前景的趋势符合研究人员和临床医生的利益。这需要对癌症免疫疗法相关数据库进行定量的大规模分析。我们开发了一种用于科学文献数据文本挖掘、统计分析和数据可视化的新颖工具。我们使用该工具分析了来自公共数据库的72002篇癌症免疫疗法出版物和1469项临床试验。所有源代码均可在开放获取许可下获取。多年来,癌症免疫疗法领域内特定主题的贡献发生了显著变化。我们表明,重点正从基于细胞的疗法和疫苗接种转向检查点抑制剂,这些趋势具有统计学意义。快速发展的子领域包括化疗与检查点阻断的联合应用。转化研究已从血液学和皮肤肿瘤转向胃肠道和肺癌,从肿瘤抗原和血管生成转向肿瘤基质和细胞凋亡。这项工作突出了无偏倚的大规模数据库挖掘对于评估癌症研究趋势,尤其是癌症免疫疗法趋势的重要性。研究人员、临床医生和资助机构应了解免疫疗法领域的定量趋势,将资源分配到最有前景的领域,并为当前尚不成熟的主题寻找新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7403/5993505/6432074ae398/koni-07-07-1444412-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验