Suppr超能文献

一种基于新型 PARAFAC 的 HPLC-MS 数据处理算法:草药提取物鉴定。

A new PARAFAC-based algorithm for HPLC-MS data treatment: herbal extracts identification.

机构信息

Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.

出版信息

Phytochem Anal. 2020 Nov;31(6):948-956. doi: 10.1002/pca.2967. Epub 2020 Jun 18.

Abstract

INTRODUCTION

Role of highly informative high-performance liquid chromatography mass spectrometry (HPLC-MS) methods in quality control is increasing. Complex herbal products and formulations can simultaneously contain extracts from different plants. Therefore, due to the leads to lack of commercial standards it is important to develop novel approaches for comprehensive treatment of big datasets.

OBJECTIVE

The aim of this study is to create a straightforward and information-saving algorithm for the identification of plants extracts in commercial products.

MATERIAL AND METHODS

In total, 34 samples, including Glycyrrhiza glabra and Panax ginseng dried roots; and Abrus precatorius dried leaves, their double and triple mixtures and flavoured oolong tea samples were analysed by HPLC-MS and combined in a three-dimensional dataset (retention time-mass-to-charge ratio (m/z)-samples). This dataset was subjected to smoothing and denoising techniques and further decomposed using parallel factor analysis (PARAFAC).

RESULTS

Samples were divided into eight clusters; loading matrices were interpreted and the presence of the most characteristic triterpene glycoside groups was demonstrated and supported by the characteristic chromatogram approach. The occurrence of Abrus precatorius and G. glabra additives in flavoured tea was confirmed.

CONCLUSION

Developed HPLC-MS-PARAFAC method is potentially reliable and an efficient tool for handling untreated experimental data and its future development may lead to more comprehensive evaluation of chemical composition and quality control of food additives and other complex mixtures.

摘要

简介

高效液相色谱-质谱联用(HPLC-MS)等高度信息丰富的方法在质量控制中的作用日益凸显。复杂的草药产品和配方可能同时包含来自不同植物的提取物。因此,由于缺乏商业标准,开发用于综合处理大数据集的新方法非常重要。

目的

本研究旨在为商业产品中植物提取物的鉴定创建一种简单、节省信息的算法。

材料与方法

共分析了 34 个样本,包括甘草和人参的干根;以及鸡骨草的干叶,它们的双和三混合物以及调味乌龙茶样本,采用 HPLC-MS 进行分析,并组合成一个三维数据集(保留时间-质荷比(m/z)-样本)。该数据集经过平滑和去噪技术处理,并进一步使用平行因子分析(PARAFAC)进行分解。

结果

样本被分为 8 个聚类;解释了负载矩阵,并通过特征色谱图方法证明和支持了最特征性三萜糖苷组的存在。证实了调味茶中鸡骨草和甘草添加剂的存在。

结论

开发的 HPLC-MS-PARAFAC 方法具有潜在的可靠性和处理未处理实验数据的有效工具,其未来的发展可能会导致对食品添加剂和其他复杂混合物的化学成分和质量控制进行更全面的评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验