Boston University School of Medicine, Boston, Massachusetts, United States of America.
Boston Medical Center, Boston, Massachusetts, United States of America.
PLoS One. 2020 Jun 19;15(6):e0234908. doi: 10.1371/journal.pone.0234908. eCollection 2020.
Accurate, automated extraction of clinical stroke information from unstructured text has several important applications. ICD-9/10 codes can misclassify ischemic stroke events and do not distinguish acuity or location. Expeditious, accurate data extraction could provide considerable improvement in identifying stroke in large datasets, triaging critical clinical reports, and quality improvement efforts. In this study, we developed and report a comprehensive framework studying the performance of simple and complex stroke-specific Natural Language Processing (NLP) and Machine Learning (ML) methods to determine presence, location, and acuity of ischemic stroke from radiographic text. We collected 60,564 Computed Tomography and Magnetic Resonance Imaging Radiology reports from 17,864 patients from two large academic medical centers. We used standard techniques to featurize unstructured text and developed neurovascular specific word GloVe embeddings. We trained various binary classification algorithms to identify stroke presence, location, and acuity using 75% of 1,359 expert-labeled reports. We validated our methods internally on the remaining 25% of reports and externally on 500 radiology reports from an entirely separate academic institution. In our internal population, GloVe word embeddings paired with deep learning (Recurrent Neural Networks) had the best discrimination of all methods for our three tasks (AUCs of 0.96, 0.98, 0.93 respectively). Simpler NLP approaches (Bag of Words) performed best with interpretable algorithms (Logistic Regression) for identifying ischemic stroke (AUC of 0.95), MCA location (AUC 0.96), and acuity (AUC of 0.90). Similarly, GloVe and Recurrent Neural Networks (AUC 0.92, 0.89, 0.93) generalized better in our external test set than BOW and Logistic Regression for stroke presence, location and acuity, respectively (AUC 0.89, 0.86, 0.80). Our study demonstrates a comprehensive assessment of NLP techniques for unstructured radiographic text. Our findings are suggestive that NLP/ML methods can be used to discriminate stroke features from large data cohorts for both clinical and research-related investigations.
准确、自动地从非结构化文本中提取临床中风信息具有重要的应用价值。ICD-9/10 代码可能会错误分类缺血性中风事件,并且无法区分急性或位置。快速、准确的数据提取可以大大提高在大型数据集、分诊关键临床报告和质量改进工作中识别中风的能力。在这项研究中,我们开发并报告了一个全面的框架,研究了简单和复杂的中风特定自然语言处理 (NLP) 和机器学习 (ML) 方法的性能,以确定放射学文本中缺血性中风的存在、位置和严重程度。我们从两个大型学术医疗中心的 17864 名患者中收集了 60564 份计算机断层扫描和磁共振成像放射学报告。我们使用标准技术对非结构化文本进行特征化,并开发了神经血管特定的单词 GloVe 嵌入。我们使用 75%的 1359 份专家标记报告训练了各种二进制分类算法,以识别中风的存在、位置和严重程度。我们在其余 25%的报告内部验证了我们的方法,并在另一个完全独立的学术机构的 500 份放射学报告外部验证了我们的方法。在我们的内部人群中,GloVe 单词嵌入与深度学习(递归神经网络)结合,在我们的三个任务中的所有方法中具有最佳的区分度(AUC 分别为 0.96、0.98 和 0.93)。更简单的 NLP 方法(词袋)与可解释算法(逻辑回归)一起使用,可用于识别缺血性中风(AUC 为 0.95)、MCA 位置(AUC 为 0.96)和严重程度(AUC 为 0.90)。同样,在我们的外部测试集中,GloVe 和递归神经网络(AUC 分别为 0.92、0.89 和 0.93)比 BOW 和逻辑回归(AUC 分别为 0.89、0.86 和 0.80)更好地概括了中风的存在、位置和严重程度。我们的研究展示了对非结构化放射学文本的 NLP 技术的全面评估。我们的研究结果表明,NLP/ML 方法可用于从大数据队列中区分中风特征,以进行临床和研究相关的研究。