Suppr超能文献

通过机器学习在院前环境中进行早期卒中检测。

Early stroke detection through machine learning in the prehospital setting.

作者信息

Ríos Delgado María, Reig Roselló Gemma, Riera-Lopez Nicolas, Vivancos José A, Ayala José L

机构信息

Department of Computer Arquitecture and Automation, Universidad Complutense de Madrid, Madrid, Spain.

Servicio de Neurología, Hospital Universitario de La Princesa, IIS-Princesa - Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain.

出版信息

Front Cardiovasc Med. 2025 Aug 7;12:1629853. doi: 10.3389/fcvm.2025.1629853. eCollection 2025.

Abstract

BACKGROUND

Stroke is a leading cause of death and disability globally, with rising prevalence driven by modern lifestyle factors. Despite the critical nature of stroke as a time-sensitive condition requiring prompt diagnosis and intervention, current pre-diagnostic practices are often limited by reliance on specific patient symptoms, which can delay appropriate treatment, especially for large vessel occlusions (LVO). This study introduces a novel approach utilizing machine learning techniques to accurately identify stroke type and severity using hemodynamic data. By enhancing the pre-hospital diagnosis process, the research aims to optimize hospital selection and improve emergency stroke care, ultimately ensuring timely treatment at specialized centers.

METHODS

The methodology of this project consists on two phases. The first step involves developing two specialized models to predict the type of stroke-ischemic or hemorrhagic-along with a Bayesian rule to determine the final classification. The second step, applied only in cases of ischemic stroke, identifies whether the episode is a Large Vessel Occlusion (LVO) or not.

RESULTS

The study developed a robust framework for detecting Large Vessel Occlusions (LVO) during Emergency Medical Services (EMS) interventions. The results for ischemic episodes showed that the LVO model achieved 91.67% recall and 64.71% precision, outperforming the prehospital scale used as a reference in all performance metrics except specificity. This model utilized only 20 out of the 271 original variables, with the most representative variables including blood pressure, heart rate, oxygen saturation, and arm movement. The integration of the LVO model for the complete sample with a Bayesian pipeline resulted in a precision of 59% and a recall of 74%, while applying the LVO model to the entire population yielded a precision of 60.60% and a recall of 80.19%.

CONCLUSION

The study concluded that the implementation of Machine Learning (ML) techniques can significantly improve the diagnostic accuracy of stroke in the context of Emergency Medical Services (EMS). The LVO model demonstrated promising results, with an improvement in positive recall of approximately 10%-13% compared to the baseline paradigm. The use of objective variables, such as blood pressure and heart rate, was a key factor in this enhancement. The study highlights the potential benefits of leveraging ML techniques in Emergency Medicine, particularly in the diagnosis and management of stroke. The results suggest that the LVO model can potentially augment the precision of stroke diagnosis, facilitating more efficacious and timely interventions.

摘要

背景

中风是全球死亡和残疾的主要原因,现代生活方式因素导致其患病率不断上升。尽管中风作为一种对时间敏感的疾病,需要及时诊断和干预,但其关键性质决定了当前的预诊断方法往往受到对特定患者症状的依赖的限制,这可能会延迟适当的治疗,尤其是对于大血管闭塞(LVO)。本研究引入了一种利用机器学习技术的新方法,通过血流动力学数据准确识别中风类型和严重程度。通过加强院前诊断过程,该研究旨在优化医院选择并改善急诊中风护理,最终确保在专科中心及时治疗。

方法

本项目的方法包括两个阶段。第一步涉及开发两个专门模型来预测中风类型(缺血性或出血性)以及一个贝叶斯规则来确定最终分类。第二步仅适用于缺血性中风病例,用于识别发作是否为大血管闭塞(LVO)。

结果

该研究开发了一个强大的框架,用于在紧急医疗服务(EMS)干预期间检测大血管闭塞(LVO)。缺血性发作的结果表明,LVO模型的召回率达到91.67%,精确率达到64.71%,在除特异性之外的所有性能指标上均优于用作参考的院前量表。该模型仅使用了271个原始变量中的20个,最具代表性的变量包括血压、心率、血氧饱和度和手臂运动。将完整样本的LVO模型与贝叶斯管道集成后,精确率为59%,召回率为74%,而将LVO模型应用于整个人口时,精确率为60.60%,召回率为80.19%。

结论

该研究得出结论,机器学习(ML)技术的应用可以在紧急医疗服务(EMS)背景下显著提高中风的诊断准确性。LVO模型显示出有希望的结果,与基线范式相比,阳性召回率提高了约10%-13%。使用诸如血压和心率等客观变量是这一提高的关键因素。该研究强调了在急诊医学中利用ML技术的潜在益处,特别是在中风的诊断和管理方面。结果表明,LVO模型有可能提高中风诊断的精确性,促进更有效和及时的干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e40/12367740/157919ec24be/fcvm-12-1629853-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验