Suppr超能文献

脑电图信号递归分析作为功能连接性测量方法的临床应用:不同神经精神疾病患者的比较案例研究

The Clinical Application of EEG-Signals Recurrence Analysis as a Measure of Functional Connectivity: Comparative Case Study of Patients with Various Neuropsychiatric Disorders.

作者信息

Jonak Kamil, Syta Arkadiusz, Karakuła-Juchnowicz Hanna, Krukow Paweł

机构信息

Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-439 Lublin, Poland.

Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 38 D, 20-618 Lublin, Poland.

出版信息

Brain Sci. 2020 Jun 16;10(6):380. doi: 10.3390/brainsci10060380.

Abstract

BACKGROUND

An electroencephalogram (EEG) is a simple and widely used assessment tool that allows one to analyze the bioelectric activity of the brain. As a result, one can observe brain waves with different frequencies and amplitudes that correspond to the temporary synchronization of different parts of the brain. Synchronization patterns may be changed by almost any type of pathological conditions, such as psychiatric diseases and structural abnormalities of the brain tissue. In various neuropsychiatric disorders, the coordination of cortical activity may be decreased or enhanced as a result of neurobiological compensatory mechanisms.

METHODS

In this paper, we analyzed the EEG signals in resting-state condition, with reference to three patients with a similar set of psychopathological symptoms typical for the first psychotic episode, but with different functional and structural neural basis of the disease. Additionally, those patients were compared with a demographically matched healthy individual. We used the non-linear method of time series analysis based on the recurrences of states, to verify whether functional connectivity configurations assessed with recurrence method will qualitatively distinguish patients from a healthy subject, but also differentiate patients from each other.

RESULTS

Obtained results confirmed that the connectivity architecture mapped with the recurrence analysis substantially differentiated all participants from each other. An applied analysis additionally showed the specificity of cortical desynchronization and over-synchronization matched to the psychiatric or neurological basis of the disease. Despite this encouraging finding, group-oriented studies are needed to corroborate our qualitative results, based only on a series of clinical case studies.

摘要

背景

脑电图(EEG)是一种简单且广泛应用的评估工具,可用于分析大脑的生物电活动。因此,人们能够观察到与大脑不同部位的暂时同步相对应的不同频率和振幅的脑电波。几乎任何类型的病理状况,如精神疾病和脑组织的结构异常,都可能改变同步模式。在各种神经精神疾病中,由于神经生物学补偿机制,皮质活动的协调性可能会降低或增强。

方法

在本文中,我们分析了静息状态下的脑电图信号,参考了三名患有首次精神病发作典型的一组相似精神病理症状,但疾病的功能和结构神经基础不同的患者。此外,将这些患者与人口统计学匹配的健康个体进行了比较。我们使用基于状态重现的时间序列分析的非线性方法,以验证用重现方法评估的功能连接配置是否能在质量上区分患者与健康受试者,同时也能区分患者之间的差异。

结果

获得的结果证实,用重现分析绘制的连接架构能显著区分所有参与者。应用分析还显示了与疾病的精神或神经基础相匹配的皮质去同步化和过度同步化的特异性。尽管有这一令人鼓舞的发现,但仅基于一系列临床病例研究,仍需要进行面向群体的研究来证实我们的定性结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8ca/7349203/37f5918619de/brainsci-10-00380-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验