Suppr超能文献

超声造影图像中的肿瘤血管网络作为经动脉化疗栓塞治疗反应的预测指标。

Tumor Vascular Networks Depicted in Contrast-Enhanced Ultrasound Images as a Predictor for Transarterial Chemoembolization Treatment Response.

机构信息

Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA.

Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

出版信息

Ultrasound Med Biol. 2020 Sep;46(9):2276-2286. doi: 10.1016/j.ultrasmedbio.2020.05.010. Epub 2020 Jun 16.

Abstract

Hepatocellular carcinoma (HCC) is prevalent worldwide. Among the various therapeutic options, transarterial chemoembolization (TACE) can be applied to the tumor vascular network by restricting the nutrients and oxygen supply to the tumor. Unique morphologic properties of this network may provide information predictive of future therapeutic responses, which would be significant for decision making during treatment planning. The extraction of morphologic features from the tumor vascular network depicted in abdominal contrast-enhanced ultrasound (CEUS) images faces several challenges, such as organ motion, limited resolution caused by clutter signal and segmentation of the vascular structures at multiple scales. In this study, we present an image processing and analysis approach for the prediction of HCC response to TACE treatment using clinical CEUS images and known pathologic responses. This method focuses on addressing the challenges of CEUS by incorporating a two-stage motion correction strategy, clutter signal removal, vessel enhancement at multiple scales and machine learning for predictive modeling. The morphologic features, namely, number of vessels (NV), number of bifurcations (NB), vessel to tissue ratio (VR), mean vessel length, tortuosity and diameter, from tumor architecture were quantified from CEUS images of 36 HCC patients before TACE treatment. Our analysis revealed that NV, NB and VR are the dominant features for the prediction of long-term TACE response. The model had an accuracy of 86% with a sensitivity and specificity of 89% and 82%, respectively. Reliable prediction of the TACE therapy response using CEUS-derived image features may help to provide personalized therapy planning, which will ultimately improve patient outcomes.

摘要

肝细胞癌(HCC)在全球范围内普遍存在。在各种治疗选择中,经动脉化疗栓塞(TACE)可以通过限制肿瘤的营养和氧气供应来作用于肿瘤的血管网络。该网络的独特形态学特性可以提供对未来治疗反应的预测信息,这对于治疗计划期间的决策制定具有重要意义。从腹部对比增强超声(CEUS)图像中描绘的肿瘤血管网络中提取形态学特征面临着许多挑战,例如器官运动、由杂波信号引起的有限分辨率以及在多个尺度上对血管结构的分割。在本研究中,我们提出了一种使用临床 CEUS 图像和已知的病理反应来预测 HCC 对 TACE 治疗反应的图像处理和分析方法。该方法专注于通过整合两阶段运动校正策略、杂波信号去除、多尺度血管增强和机器学习进行预测建模来解决 CEUS 的挑战。形态学特征,即血管数量(NV)、分叉数量(NB)、血管与组织比(VR)、平均血管长度、迂曲度和直径,是从 36 例 HCC 患者 TACE 治疗前的 CEUS 图像中量化的。我们的分析表明,NV、NB 和 VR 是预测长期 TACE 反应的主要特征。该模型的准确率为 86%,灵敏度和特异性分别为 89%和 82%。使用 CEUS 衍生的图像特征可靠地预测 TACE 治疗反应可能有助于提供个性化的治疗计划,从而最终改善患者的预后。

相似文献

引用本文的文献

7
Artificial intelligence in liver imaging: methods and applications.人工智能在肝脏成像中的应用:方法与应用。
Hepatol Int. 2024 Apr;18(2):422-434. doi: 10.1007/s12072-023-10630-w. Epub 2024 Feb 20.
9
Imaging in inflammatory arthritis: progress towards precision medicine.炎症性关节炎的影像学:迈向精准医学的进展。
Nat Rev Rheumatol. 2023 Oct;19(10):650-665. doi: 10.1038/s41584-023-01016-1. Epub 2023 Sep 8.

本文引用的文献

5
Imaging Methods for Ultrasound Contrast Agents.超声对比剂的成像方法。
Ultrasound Med Biol. 2020 Mar;46(3):498-517. doi: 10.1016/j.ultrasmedbio.2019.11.004. Epub 2019 Dec 6.
8
The Epidemiology of Hepatocellular Carcinoma in the USA.美国肝细胞癌的流行病学
Curr Gastroenterol Rep. 2019 Apr 11;21(4):17. doi: 10.1007/s11894-019-0681-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验