Cognitive Neuroscience Laboratory, Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela, Santiago de Compostela, Galiza, Spain.
Psychological Neuroscience Lab, Escola de psicologia, Universidade do Minho, Portugal.
Neurobiol Learn Mem. 2021 Sep;183:107476. doi: 10.1016/j.nlm.2021.107476. Epub 2021 Jun 2.
Working memory (WM) is a keystone of our cognitive abilities. Increasing load has been shown to dampen its performance and affect oscillatory neural activity in different frequency bands. Nevertheless, mixed results regarding fast frequencies activity and a lack of research on WM load modulations of cross-frequency phase-amplitude coupling mechanisms preclude a better understanding of the impact of increased WM load levels on brain activity as well as inter-regional communication and coordination supporting WM processes. Hence, we analyzed the EEG activity of 25 participants while performing a delayed-matching-to-sample (DMS) WM task with three WM load levels. Current density power and distribution at the source level for theta, beta, and gamma frequencies during the task's delay period were compared for each pair of WM load conditions. Results showed maximal increases of theta activity in frontal areas and of fast frequencies' activity in posterior regions with WM load, showing the involvement of frontal theta activity in WM maintenance and the control of attentional resources and visual processing by beta and gamma activity. To study whether WM load modulates communication between cortical areas, posterior beta and gamma amplitudes distribution across frontal theta phase was also analysed for those areas showing the largest significant WM load modulations. Higher beta activity amplitude at bilateral cuneus and right middle occipital gyrus, and higher gamma activity amplitude at bilateral posterior cingulate were observed during frontal theta phase peak in low than high memory load conditions. Moreover, greater fast beta amplitude at the right postcentral gyrus was observed during theta phase trough at right middle frontal gyrus in high than low memory load conditions. These results show that WM load modulates whether interregional communication occurs during theoretically optimal or non-optimal time windows, depending on the demands of frontal control of posterior areas required to perform the task successfully.
工作记忆(WM)是我们认知能力的关键。增加工作记忆负荷已被证明会降低其性能,并影响不同频段的振荡神经活动。然而,关于快频活动的结果喜忧参半,以及缺乏关于 WM 负荷调制的跨频相位-幅度耦合机制的研究,使得我们无法更好地理解增加 WM 负荷水平对大脑活动以及支持 WM 过程的区域间通信和协调的影响。因此,我们分析了 25 名参与者在执行延迟匹配样本(DMS)WM 任务时的 EEG 活动,该任务有三个 WM 负荷水平。在任务的延迟期间,针对每个 WM 负荷条件对theta、beta 和 gamma 频率的源水平电流密度功率和分布进行了比较。结果表明,WM 负荷时额区theta 活动增加最大,后区快频活动增加最大,表明额叶 theta 活动参与 WM 维持以及 beta 和 gamma 活动对注意力资源和视觉处理的控制。为了研究 WM 负荷是否调节皮质区域之间的通信,还分析了在表现出最大 WM 负荷调制的区域中,后区 beta 和 gamma 振幅在额区 theta 相位上的分布。在低记忆负荷条件下,双侧楔前叶和右侧中枕叶的 beta 活动振幅较高,双侧后扣带回的 gamma 活动振幅较高;而在高记忆负荷条件下,右侧中央后回的 beta 活动振幅较高,额区 theta 相位波谷时,右侧额中回的 theta 活动振幅较高。这些结果表明,WM 负荷调节了在理论上最佳或非最佳时间窗口中是否发生区域间通信,这取决于成功执行任务所需的额叶对后区的控制要求。