Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.
Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA.
Appl Environ Microbiol. 2020 Aug 18;86(17). doi: 10.1128/AEM.00943-20.
Cultivated bacterioplankton representatives from diverse lineages and locations are essential for microbiology, but the large majority of taxa either remain uncultivated or lack isolates from diverse geographic locales. We paired large-scale dilution-to-extinction (DTE) cultivation with microbial community analysis and modeling to expand the phylogenetic and geographic diversity of cultivated bacterioplankton and to evaluate DTE cultivation success. Here, we report results from 17 DTE experiments totaling 7,820 individual incubations over 3 years, yielding 328 repeatably transferable isolates. Comparison of isolates to microbial community data for source waters indicated that we successfully isolated 5% of the observed bacterioplankton community throughout the study; 43% and 26% of our isolates matched operational taxonomic units and amplicon single-nucleotide variants, respectively, within the top 50 most abundant taxa. Isolates included those from previously uncultivated clades such as SAR11 LD12 and acIV, as well as geographically novel members from other ecologically important groups like SAR11 subclade IIIa, SAR116, and others, providing isolates in eight putatively new genera and seven putatively new species. Using a newly developed DTE cultivation model, we evaluated taxon viability by comparing relative abundance with cultivation success. The model (i) revealed the minimum attempts required for successful isolation of taxa amenable to growth on our media and (ii) identified possible subpopulation viability variation in abundant taxa such as SAR11 that likely impacts cultivation success. By incorporating viability in experimental design, we can now statistically constrain the effort necessary for successful cultivation of specific taxa on a defined medium. Even before the coining of the term "great plate count anomaly" in the 1980s, scientists had noted the discrepancy between the number of microorganisms observed under the microscope and the number of colonies that grew on traditional agar media. New cultivation approaches have reduced this disparity, resulting in the isolation of some of the "most wanted" bacterial lineages. Nevertheless, the vast majority of microorganisms remain uncultured, hampering progress toward answering fundamental biological questions about many important microorganisms. Furthermore, few studies have evaluated the underlying factors influencing cultivation success, limiting our ability to improve cultivation efficacy. Our work details the use of dilution-to-extinction (DTE) cultivation to expand the phylogenetic and geographic diversity of available axenic cultures. We also provide a new model of the DTE approach that uses cultivation results and natural abundance information to predict taxon-specific viability and iteratively constrain DTE experimental design to improve cultivation success.
从不同谱系和地点培养的细菌浮游生物代表对于微生物学来说是必不可少的,但绝大多数分类群要么仍然未被培养,要么缺乏来自不同地理区域的分离株。我们将大规模稀释至灭绝(DTE)培养与微生物群落分析和建模相结合,以扩大可培养细菌浮游生物的系统发育和地理多样性,并评估 DTE 培养的成功。在这里,我们报告了 3 年来进行的 17 项 DTE 实验的结果,总共进行了 7820 次单独的孵育,得到了 328 个可重复转移的分离株。将分离株与水源微生物群落数据进行比较表明,我们在整个研究过程中成功分离了观察到的细菌浮游生物群落的 5%;我们的分离株中有 43%和 26%分别与丰度最高的 50 个分类群内的分类单元和扩增子单核苷酸变体相匹配。分离株包括以前未培养的谱系,如 SAR11 LD12 和 acIV,以及其他生态重要群体中地理上新颖的成员,如 SAR11 亚群 IIIa、SAR116 等,提供了 8 个推测的新属和 7 个推测的新种的分离株。使用新开发的 DTE 培养模型,我们通过比较相对丰度和培养成功率来评估分类群的生存能力。该模型(i)揭示了成功分离适合我们培养基生长的分类群所需的最小尝试次数,(ii)确定了丰度较高的分类群(如 SAR11)中可能影响培养成功率的潜在亚群生存能力变化。通过在实验设计中纳入生存能力,我们现在可以统计地限制在特定培养基上成功培养特定分类群所需的努力。即使在 20 世纪 80 年代“高平板计数异常”一词出现之前,科学家们就已经注意到在显微镜下观察到的微生物数量与在传统琼脂培养基上生长的菌落数量之间的差异。新的培养方法减少了这种差异,导致一些“最受欢迎”的细菌谱系得到了分离。然而,绝大多数微生物仍然未被培养,阻碍了我们对许多重要微生物的基本生物学问题的回答。此外,很少有研究评估影响培养成功率的潜在因素,限制了我们提高培养效果的能力。我们的工作详细介绍了使用稀释至灭绝(DTE)培养来扩大可培养培养物的系统发育和地理多样性。我们还提供了 DTE 方法的新模型,该模型使用培养结果和自然丰度信息来预测分类群特异性生存能力,并迭代约束 DTE 实验设计以提高培养成功率。