Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
Nat Commun. 2020 Jun 19;11(1):3118. doi: 10.1038/s41467-020-16957-4.
Low-cost flexible microwave circuits with compact size and light weight are highly desirable for flexible wireless communication and other miniaturized microwave systems. However, the prevalent studies on flexible microwave electronics have only focused on individual flexible microwave elements such as transistors, inductors, capacitors, and transmission lines. Thinning down supporting substrate of rigid chip-based monolithic microwave integrated circuits has been the only approach toward flexible microwave integrated circuits. Here, we report a flexible microwave integrated circuit strategy integrating membrane AlGaN/GaN high electron mobility transistor with passive impedance matching networks on cellulose nanofibril paper. The strategy enables a heterogeneously integrated and, to our knowledge, the first flexible microwave amplifier that can output 10 mW power beyond 5 GHz and can also be easily disposed of due to the use of cellulose nanofibril paper as the circuit substrate. The demonstration represents a critical step forward in realizing flexible wireless communication devices.
低成本、体积小、重量轻的柔性微波电路对于灵活的无线通信和其他小型化微波系统非常理想。然而,现有的柔性微波电子学研究仅集中在单个柔性微波元件上,如晶体管、电感器、电容器和传输线。将基于刚性芯片的单片微波集成电路的支撑衬底变薄一直是实现柔性微波集成电路的唯一途径。在这里,我们报告了一种将薄膜 AlGaN/GaN 高电子迁移率晶体管与纤维素纳米纤维纸上的无源阻抗匹配网络集成在一起的柔性微波集成电路策略。该策略实现了异构集成,据我们所知,这是第一个能够在 5GHz 以上输出 10mW 功率的柔性微波放大器,并且由于使用纤维素纳米纤维纸作为电路衬底,因此可以很容易地处理掉。该演示代表着在实现灵活的无线通信设备方面迈出了关键的一步。