Suppr超能文献

肝切除术后肝功能衰竭的血清标志物探索性研究。

Explorative study of serum biomarkers of liver failure after liver resection.

机构信息

Department of Surgery, Division of HBP Surgery and Liver Transplantation, Korea University Medical Center, Korea University Medical College, Seoul, Korea.

Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, Korea.

出版信息

Sci Rep. 2020 Jun 19;10(1):9960. doi: 10.1038/s41598-020-66947-1.

Abstract

Conventional biochemical markers have limited usefulness in the prediction of early liver dysfunction. We, therefore, tried to find more useful liver failure biomarkers after liver resection that are highly sensitive to internal and external challenges in the biological system with a focus on liver metabolites. Twenty pigs were divided into the following 3 groups: sham operation group (n = 6), 70% hepatectomy group (n = 7) as a safety margin of resection model, and 90% hepatectomy group (n = 7) as a liver failure model. Blood sampling was performed preoperatively and at 1, 6, 14, 30, 38, and 48 hours after surgery, and 129 primary metabolites were profiled. Orthogonal projection to latent structures-discriminant analysis revealed that, unlike in the 70% hepatectomy and sham operation groups, central carbon metabolism was the most significant factor in the 90% hepatectomy group. Binary logistic regression analysis was used to develop a predictive model for mortality risk following hepatectomy. The recommended variables were malic acid, methionine, tryptophan, glucose, and γ-aminobutyric acid. Area under the curve of the linear combination of five metabolites was 0.993 (95% confidence interval: 0.927-1.000, sensitivity: 100.0, specificity: 94.87). We proposed robust biomarker panels that can accurately predict mortality risk associated with hepatectomy.

摘要

传统的生化标志物在预测早期肝功能障碍方面的作用有限。因此,我们试图在肝切除术后寻找更有用的肝衰竭生物标志物,这些标志物对生物系统内外的挑战高度敏感,重点是肝脏代谢物。20 头猪分为以下 3 组:假手术组(n=6)、70%肝切除术组(n=7)作为安全切除模型,90%肝切除术组(n=7)作为肝衰竭模型。术前和术后 1、6、14、30、38 和 48 小时进行采血,分析了 129 种主要代谢物。正交投影到潜在结构判别分析显示,与 70%肝切除术和假手术组不同,90%肝切除术组的中心碳代谢是最重要的因素。使用二元逻辑回归分析建立肝切除术后死亡风险的预测模型。推荐的变量为苹果酸、蛋氨酸、色氨酸、葡萄糖和γ-氨基丁酸。5 种代谢物线性组合的曲线下面积为 0.993(95%置信区间:0.927-1.000,灵敏度:100.0,特异性:94.87)。我们提出了稳健的生物标志物组合,可以准确预测肝切除术后与死亡率相关的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a92b/7305107/c23693e41af9/41598_2020_66947_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验