Suppr超能文献

利用代谢组学分析胱硫醚-β-合酶缺陷型小鼠模型中的新生儿差异致死性。

Analysis of differential neonatal lethality in cystathionine β-synthase deficient mouse models using metabolic profiling.

机构信息

Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA.

Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA.

出版信息

FASEB J. 2021 Jun;35(6):e21629. doi: 10.1096/fj.202100302R.

Abstract

Cystathionine beta-synthase (CBS) is a key enzyme of the trans-sulfuration pathway that converts homocysteine to cystathionine. Loss of CBS activity due to mutation results in CBS deficiency, an inborn error of metabolism characterized by extreme elevation of plasma total homocysteine (tHcy). C57BL6 mice containing either a homozygous null mutation in the cystathionine β-synthase (Cbs ) gene or an inactive human CBS protein (Tg-G307S Cbs ) are born in mendelian numbers, but the vast majority die between 18 and 21 days of age due to liver failure. However, adult Cbs null mice that express a hypomorphic allele of human CBS as a transgene (Tg-I278T Cbs ) show almost no neonatal lethality despite having serum tHcy levels similar to mice with no CBS activity. Here, we characterize liver and serum metabolites in neonatal Cbs , Tg-G307S Cbs , and Tg-I278T Cbs mice at 6, 10, and 17 days of age to understand this difference. In serum, we observe similar elevations in tHcy in both Tg-G307S Cbs and Tg-I278T Cbs compared to control animals, but methionine is much more severely elevated in Tg-G307S Cbs mice. Large scale metabolomic analysis of liver tissue confirms that both methionine and methionine-sulfoxide are significantly more elevated in Tg-G307S Cbs animals, along with significant differences in several other metabolites including hexoses, amino acids, other amines, lipids, and carboxylic acids. Our data are consistent with a model that the neonatal lethality observed in CBS-null mice is driven by excess methionine resulting in increased stress on a variety of related pathways including the urea cycle, TCA cycle, gluconeogenesis, and phosphatidylcholine biosynthesis.

摘要

胱硫醚-β-合酶(CBS)是转硫途径中的关键酶,可将同型半胱氨酸转化为胱硫醚。由于突变导致 CBS 活性丧失,会引起 CBS 缺乏症,这是一种代谢性遗传病,其特征是血浆总同型半胱氨酸(tHcy)极度升高。C57BL6 小鼠要么携带胱硫醚-β-合酶(Cbs)基因的纯合缺失突变,要么携带无活性的人类 CBS 蛋白(Tg-G307S Cbs),它们以孟德尔数出生,但绝大多数在 18 至 21 天龄时因肝功能衰竭而死亡。然而,表达人类 CBS 低功能等位基因的成年 Cbs 缺失小鼠(Tg-I278T Cbs)作为转基因,其新生仔鼠几乎没有致死性,尽管其血清 tHcy 水平与没有 CBS 活性的小鼠相似。在这里,我们在 6、10 和 17 天龄时,对 Cbs、Tg-G307S Cbs 和 Tg-I278T Cbs 新生仔鼠的肝脏和血清代谢物进行了特征描述,以了解这种差异。在血清中,我们观察到 Tg-G307S Cbs 和 Tg-I278T Cbs 与对照动物相比,tHcy 升高相似,但 Tg-G307S Cbs 小鼠的蛋氨酸升高更为严重。对肝组织进行的大规模代谢组学分析证实,Tg-G307S Cbs 动物的蛋氨酸和蛋氨酸亚砜明显升高,其他几种代谢物如己糖、氨基酸、其他胺类、脂类和羧酸也有显著差异。我们的数据与一个模型一致,即 CBS 缺失小鼠的新生仔鼠致死性是由过量的蛋氨酸引起的,这导致了包括尿素循环、三羧酸循环、糖异生和磷脂酰胆碱生物合成在内的多种相关途径的压力增加。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验