Suppr超能文献

侵袭性肺腺癌分级系统:国际肺癌研究协会病理学委员会的建议。

A Grading System for Invasive Pulmonary Adenocarcinoma: A Proposal From the International Association for the Study of Lung Cancer Pathology Committee.

机构信息

Department of Pathology, New York University Langone Health, New York, New York.

Department of Pathology, New York University Langone Health, New York, New York.

出版信息

J Thorac Oncol. 2020 Oct;15(10):1599-1610. doi: 10.1016/j.jtho.2020.06.001. Epub 2020 Jun 17.

Abstract

INTRODUCTION

A grading system for pulmonary adenocarcinoma has not been established. The International Association for the Study of Lung Cancer pathology panel evaluated a set of histologic criteria associated with prognosis aimed at establishing a grading system for invasive pulmonary adenocarcinoma.

METHODS

A multi-institutional study involving multiple cohorts of invasive pulmonary adenocarcinomas was conducted. A cohort of 284 stage I pulmonary adenocarcinomas was used as a training set to identify histologic features associated with patient outcomes (recurrence-free survival [RFS] and overall survival [OS]). Receiver operating characteristic curve analysis was used to select the best model, which was validated (n = 212) and tested (n = 300, including stage I-III) in independent cohorts. Reproducibility of the model was assessed using kappa statistics.

RESULTS

The best model (area under the receiver operating characteristic curve [AUC] = 0.749 for RFS and 0.787 for OS) was composed of a combination of predominant plus high-grade histologic pattern with a cutoff of 20% for the latter. The model consists of the following: grade 1, lepidic predominant tumor; grade 2, acinar or papillary predominant tumor, both with no or less than 20% of high-grade patterns; and grade 3, any tumor with 20% or more of high-grade patterns (solid, micropapillary, or complex gland). Similar results were seen in the validation (AUC = 0.732 for RFS and 0.787 for OS) and test cohorts (AUC = 0.690 for RFS and 0.743 for OS), confirming the predictive value of the model. Interobserver reproducibility revealed good agreement (k = 0.617).

CONCLUSIONS

A grading system based on the predominant and high-grade patterns is practical and prognostic for invasive pulmonary adenocarcinoma.

摘要

简介

尚未建立肺腺癌分级系统。国际肺癌研究协会病理学专家组评估了一组与预后相关的组织学标准,旨在为浸润性肺腺癌建立分级系统。

方法

进行了一项涉及多个浸润性肺腺癌队列的多机构研究。将 284 例 I 期肺腺癌队列作为训练集,以确定与患者结局(无复发生存率 [RFS] 和总生存率 [OS])相关的组织学特征。使用接收者操作特征曲线分析选择最佳模型,然后在独立队列中进行验证(n=212)和测试(n=300,包括 I-III 期)。使用 Kappa 统计评估模型的重现性。

结果

最佳模型(用于 RFS 的接收者操作特征曲线下面积 [AUC]为 0.749,用于 OS 的 AUC 为 0.787)由主要加高级别组织学模式的组合组成,后者的截断值为 20%。该模型包括以下内容:等级 1,以鳞屑为主的肿瘤;等级 2,以腺泡或乳头为主的肿瘤,均无或少于 20%的高级别模式;等级 3,任何具有 20%或更多高级别模式的肿瘤(实性、微乳头状或复杂腺体)。在验证(用于 RFS 的 AUC 为 0.732,用于 OS 的 AUC 为 0.787)和测试队列(用于 RFS 的 AUC 为 0.690,用于 OS 的 AUC 为 0.743)中均观察到类似结果,证实了该模型的预测价值。观察者间的重现性显示出良好的一致性(k=0.617)。

结论

基于主要和高级别模式的分级系统对浸润性肺腺癌具有实用性和预后价值。

相似文献

引用本文的文献

10
Histopathological Assessment of Non-Small Cell Lung Carcinomas.非小细胞肺癌的组织病理学评估
Curr Health Sci J. 2025 Jan-Mar;51(1):105-111. doi: 10.12865/CHSJ.51.01.11. Epub 2025 Mar 31.

本文引用的文献

1
Updates in Histologic Grading of Urologic Neoplasms.泌尿系统肿瘤组织学分级的更新。
Arch Pathol Lab Med. 2020 Mar;144(3):335-343. doi: 10.5858/arpa.2019-0551-RA.
2
Updates on spread through air spaces (STAS) in lung cancer.肺癌空气空间传播(STAS)的研究进展。
Histopathology. 2020 Aug;77(2):173-180. doi: 10.1111/his.14062. Epub 2020 Jul 1.
3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验