Suppr超能文献

基于深度学习的算法在糖尿病视网膜病变筛查中的应用:诊断性能的系统评价

Deep Learning-Based Algorithms in Screening of Diabetic Retinopathy: A Systematic Review of Diagnostic Performance.

作者信息

Nielsen Katrine B, Lautrup Mie L, Andersen Jakob K H, Savarimuthu Thiusius R, Grauslund Jakob

机构信息

Department of Ophthalmology, Odense University Hospital, Odense, Denmark; Research Unit of Ophthalmology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.

Steno Diabetes Center Odense, Odense, Denmark; SDU Robotics, The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Odense, Denmark.

出版信息

Ophthalmol Retina. 2019 Apr;3(4):294-304. doi: 10.1016/j.oret.2018.10.014. Epub 2018 Nov 3.

Abstract

TOPIC

Diagnostic performance of deep learning-based algorithms in screening patients with diabetes for diabetic retinopathy (DR). The algorithms were compared with the current gold standard of classification by human specialists.

CLINICAL RELEVANCE

Because DR is a common cause of visual impairment, screening is indicated to avoid irreversible vision loss. Automated DR classification using deep learning may be a suitable new screening tool that could improve diagnostic performance and reduce manpower.

METHODS

For this systematic review, we aimed to identify studies that incorporated the use of deep learning in classifying full-scale DR in retinal fundus images of patients with diabetes. The studies had to provide a DR grading scale, a human grader as a reference standard, and a deep learning performance score. A systematic search on April 5, 2018, through MEDLINE and Embase yielded 304 publications. To identify potentially missed publications, the reference lists of the final included studies were manually screened, yielding no additional publications. The Quality Assessment of Diagnostic Accuracy Studies 2 tool was used for risk of bias and applicability assessment.

RESULTS

By using objective selection, we included 11 diagnostic accuracy studies that validated the performance of their deep learning method using a new group of patients or retrospective datasets. Eight studies reported sensitivity and specificity of 80.28% to 100.0% and 84.0% to 99.0%, respectively. Two studies report accuracies of 78.7% and 81.0%. One study provides an area under the receiver operating curve of 0.955. In addition to diagnostic performance, one study also reported on patient satisfaction, showing that 78% of patients preferred an automated deep learning model over manual human grading.

CONCLUSIONS

Advantages of implementing deep learning-based algorithms in DR screening include reduction in manpower, cost of screening, and issues relating to intragrader and intergrader variability. However, limitations that may hinder such an implementation particularly revolve around ethical concerns regarding lack of trust in the diagnostic accuracy of computers. Considering both strengths and limitations, as well as the high performance of deep learning-based algorithms, automated DR classification using deep learning could be feasible in a real-world screening scenario.

摘要

主题

基于深度学习的算法在糖尿病患者糖尿病视网膜病变(DR)筛查中的诊断性能。将这些算法与人类专家当前的分类金标准进行比较。

临床意义

由于DR是视力损害的常见原因,因此建议进行筛查以避免不可逆转的视力丧失。使用深度学习进行自动DR分类可能是一种合适的新筛查工具,可以提高诊断性能并减少人力。

方法

对于本系统评价,我们旨在识别在糖尿病患者视网膜眼底图像中使用深度学习对全范围DR进行分类的研究。这些研究必须提供DR分级量表、作为参考标准的人工分级者以及深度学习性能评分。2018年4月5日通过MEDLINE和Embase进行的系统检索产生了304篇出版物。为了识别可能遗漏的出版物,对最终纳入研究的参考文献列表进行了人工筛选,未发现其他出版物。使用诊断准确性研究质量评估2工具进行偏倚风险和适用性评估。

结果

通过客观选择,我们纳入了11项诊断准确性研究,这些研究使用一组新患者或回顾性数据集验证了其深度学习方法的性能。八项研究报告的敏感性和特异性分别为80.28%至100.0%和84.0%至99.0%。两项研究报告的准确率分别为78.7%和81.0%。一项研究提供的受试者操作特征曲线下面积为0.955。除了诊断性能外,一项研究还报告了患者满意度,表明78%的患者更喜欢自动深度学习模型而不是人工分级。

结论

在DR筛查中实施基于深度学习的算法的优点包括减少人力、筛查成本以及与分级者内部和分级者之间变异性相关的问题。然而,可能阻碍这种实施的局限性尤其围绕对计算机诊断准确性缺乏信任的伦理问题。考虑到优点和局限性以及基于深度学习的算法的高性能,在现实世界的筛查场景中使用深度学习进行自动DR分类可能是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验