Suppr超能文献

基于肝功能和肝癌患者肝切除程度预测肝切除术后肝功能衰竭的新模型。

A novel model for predicting posthepatectomy liver failure based on liver function and degree of liver resection in patients with hepatocellular carcinoma.

机构信息

Department of Gastroenterological and Transplant Surgery, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan.

Department of Gastroenterological and Transplant Surgery, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan.

出版信息

HPB (Oxford). 2021 Jan;23(1):134-143. doi: 10.1016/j.hpb.2020.05.008. Epub 2020 Jun 18.

Abstract

BACKGROUND

The permissible liver resection rate for preventing posthepatectomy liver failure (PHLF) remains unclear. We aimed to develop a novel PHLF-predicting model and to strategize hepatectomy for hepatocellular carcinoma (HCC).

METHODS

This retrospective study included 335 HCC patients who underwent anatomical hepatectomy at eight institutions between 2013 and 2017. Risk factors, including volume-associated liver-estimating parameters, for PHLF grade B-C were analyzed in a training set (n = 122) via multivariate analysis, and a PHLF prediction model was developed. The utility of the model was evaluated in a validation set (n = 213).

RESULTS

Our model was based on the three independent risk factors for PHLF identified in the training set: volume-associated indocyanine green retention rate at 15 min, platelet count, and prothrombin time index (the VIPP score). The areas under the receiver operating characteristic curve of the VIPP scores for severe PHLF in the training and validation sets were 0.864 and 0.794, respectively. In both sets, the VIPP score stratified patients at risk for severe PHLF, with a score of 3 (specificity, 0.92) indicating higher risk.

CONCLUSION

Our model facilitates the selection of the appropriate hepatectomy procedure by providing permissible liver resection rates based on VIPP scores.

摘要

背景

预防肝切除术后肝衰竭(PHLF)的可允许肝切除率尚不清楚。我们旨在开发一种新的 PHLF 预测模型,并为肝细胞癌(HCC)制定肝切除术策略。

方法

本回顾性研究纳入了 2013 年至 2017 年期间在 8 个机构接受解剖性肝切除术的 335 例 HCC 患者。通过多变量分析,在训练集(n=122)中分析了 PHLF 分级 B-C 的风险因素,包括与体积相关的肝估计参数,并开发了 PHLF 预测模型。在验证集(n=213)中评估了该模型的实用性。

结果

我们的模型基于训练集中确定的三个 PHLF 独立风险因素:15 分钟时的与体积相关的吲哚菁绿滞留率、血小板计数和凝血酶原时间指数(VIPP 评分)。VIPP 评分预测训练集和验证集中严重 PHLF 的受试者工作特征曲线下面积分别为 0.864 和 0.794。在两组中,VIPP 评分均将患者分层为严重 PHLF 的风险,3 分(特异性为 0.92)表示风险较高。

结论

我们的模型通过基于 VIPP 评分提供可允许的肝切除率,有助于选择合适的肝切除术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验