Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.
Curr Opin Virol. 2020 Oct;44:7-15. doi: 10.1016/j.coviro.2020.05.002. Epub 2020 Jun 18.
In 2015-2016, the little known Zika virus (ZIKV) caused an epidemic, in which it became recognized as a unique human pathogen associated with a range of devastating congenital abnormalities collectively categorized as congenital Zika syndrome (CZS). In adults, the virus can trigger the autoimmune disorder Guillain-Barré syndrome (GBS), characterized by ascending paralysis. In February 2016, the World Health Organization (WHO) declared ZIKV to be a Public Health Emergency of International Concern. The global public health problem prompted academia, industry, and governments worldwide to initiate development of an effective vaccine to prevent another ZIKV epidemic that would put millions at risk. The development of reverse genetic systems for the study and manipulation of RNA viral genomes has revolutionized the field of virology, providing platforms for vaccine and antiviral development. In this review, we discuss the impact of reverse genetic systems on the rapid progress of ZIKV vaccines and antiviral therapeutics.
在 2015-2016 年,鲜为人知的 Zika 病毒(ZIKV)引发了一场疫情,该病毒被认为是一种独特的人类病原体,与一系列被归类为先天性 Zika 综合征(CZS)的毁灭性先天性异常有关。在成年人中,该病毒可引发吉兰-巴雷综合征(GBS)等自身免疫性疾病,其特征是进行性瘫痪。2016 年 2 月,世界卫生组织(WHO)宣布 ZIKV 为国际关注的突发公共卫生事件。这一全球性公共卫生问题促使全球学术界、产业界和政府启动了有效的疫苗开发工作,以预防另一场可能使数百万人面临风险的 ZIKV 疫情。用于研究和操纵 RNA 病毒基因组的反向遗传系统的发展彻底改变了病毒学领域,为疫苗和抗病毒药物的开发提供了平台。在这篇综述中,我们讨论了反向遗传系统对 ZIKV 疫苗和抗病毒疗法快速进展的影响。