Suppr超能文献

单细胞机械表型分析在临床应用中的前景。

The promise of single-cell mechanophenotyping for clinical applications.

作者信息

Kozminsky Molly, Sohn Lydia L

机构信息

California Institute for Quantitative Biosciences, University of California, 174 Stanley Hall, Berkeley, California 94720, USA.

出版信息

Biomicrofluidics. 2020 Jun 9;14(3):031301. doi: 10.1063/5.0010800. eCollection 2020 May.

Abstract

Cancer is the second leading cause of death worldwide. Despite the immense research focused in this area, one is still not able to predict disease trajectory. To overcome shortcomings in cancer disease study and monitoring, we describe an exciting research direction: cellular mechanophenotyping. Cancer cells must overcome many challenges involving external forces from neighboring cells, the extracellular matrix, and the vasculature to survive and thrive. Identifying and understanding their mechanical behavior in response to these forces would advance our understanding of cancer. Moreover, used alongside traditional methods of immunostaining and genetic analysis, mechanophenotyping could provide a comprehensive view of a heterogeneous tumor. In this perspective, we focus on new technologies that enable single-cell mechanophenotyping. Single-cell analysis is vitally important, as mechanical stimuli from the environment may obscure the inherent mechanical properties of a cell that can change over time. Moreover, bulk studies mask the heterogeneity in mechanical properties of single cells, especially those rare subpopulations that aggressively lead to cancer progression or therapeutic resistance. The technologies on which we focus include atomic force microscopy, suspended microchannel resonators, hydrodynamic and optical stretching, and mechano-node pore sensing. These technologies are poised to contribute to our understanding of disease progression as well as present clinical opportunities.

摘要

癌症是全球第二大死因。尽管在该领域开展了大量研究,但人们仍无法预测疾病的发展轨迹。为了克服癌症疾病研究和监测中的不足,我们描述了一个令人兴奋的研究方向:细胞机械表型分析。癌细胞必须克服许多挑战,这些挑战涉及来自邻近细胞、细胞外基质和脉管系统的外力,才能存活和发展。识别并理解它们对这些力的机械反应,将增进我们对癌症的理解。此外,与免疫染色和基因分析等传统方法一起使用时,机械表型分析可以提供异质性肿瘤的全面视图。在这篇观点文章中,我们重点关注能够实现单细胞机械表型分析的新技术。单细胞分析至关重要,因为来自环境的机械刺激可能会掩盖细胞随时间变化的固有机械特性。此外,整体研究掩盖了单细胞机械特性的异质性,尤其是那些积极导致癌症进展或产生治疗抗性的罕见亚群。我们关注的技术包括原子力显微镜、悬浮微通道谐振器、流体动力学和光学拉伸以及机械节点孔隙传感。这些技术有望增进我们对疾病进展的理解,并带来当前的临床机遇。

相似文献

1
The promise of single-cell mechanophenotyping for clinical applications.
Biomicrofluidics. 2020 Jun 9;14(3):031301. doi: 10.1063/5.0010800. eCollection 2020 May.
3
The fundamental role of mechanical properties in the progression of cancer disease and inflammation.
Rep Prog Phys. 2014 Jul;77(7):076602. doi: 10.1088/0034-4885/77/7/076602. Epub 2014 Jul 9.
4
Molecular Tension Probes for Imaging Forces at the Cell Surface.
Acc Chem Res. 2017 Dec 19;50(12):2915-2924. doi: 10.1021/acs.accounts.7b00305. Epub 2017 Nov 21.
6
8
Toxicology and genetic toxicology in the new era of "toxicogenomics": impact of "-omics" technologies.
Mutat Res. 2002 Jan 29;499(1):13-25. doi: 10.1016/s0027-5107(01)00292-5.
10
On Force and Form: Mechano-Biochemical Regulation of Extracellular Matrix.
Biochemistry. 2019 Nov 26;58(47):4710-4720. doi: 10.1021/acs.biochem.9b00219. Epub 2019 Jun 11.

引用本文的文献

1
Biophysical assays to test cellular mechanosensing: moving towards high throughput.
Biophys Rev. 2024 Dec 20;16(6):875-882. doi: 10.1007/s12551-024-01263-w. eCollection 2024 Dec.
2
Molecular mechanocytometry using tension-activated cell tagging.
Nat Methods. 2023 Nov;20(11):1666-1671. doi: 10.1038/s41592-023-02030-7. Epub 2023 Oct 5.
3
Magnetophoretic circuits: A review of device designs and implementation for precise single-cell manipulation.
Anal Chim Acta. 2023 Sep 1;1272:341425. doi: 10.1016/j.aca.2023.341425. Epub 2023 May 31.
5
Mechanical phenotyping reveals unique biomechanical responses in retinoic acid-resistant acute promyelocytic leukemia.
iScience. 2022 Jan 15;25(2):103772. doi: 10.1016/j.isci.2022.103772. eCollection 2022 Feb 18.
6
The Mechanobiology of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease.
Front Physiol. 2021 Sep 9;12:734215. doi: 10.3389/fphys.2021.734215. eCollection 2021.
7
Mechanical Measurements of Cells Using AFM: 3D or 2D Physics?
Front Bioeng Biotechnol. 2020 Nov 19;8:605153. doi: 10.3389/fbioe.2020.605153. eCollection 2020.
9
Single-Cell Mechanophenotyping in Microfluidics to Evaluate Behavior of U87 Glioma Cells.
Micromachines (Basel). 2020 Sep 11;11(9):845. doi: 10.3390/mi11090845.

本文引用的文献

1
A comparison of microfluidic methods for high-throughput cell deformability measurements.
Nat Methods. 2020 Jun;17(6):587-593. doi: 10.1038/s41592-020-0818-8. Epub 2020 Apr 27.
2
Breast Tissue Biology Expands the Possibilities for Prevention of Age-Related Breast Cancers.
Front Cell Dev Biol. 2019 Aug 28;7:174. doi: 10.3389/fcell.2019.00174. eCollection 2019.
3
High stretchability, strength, and toughness of living cells enabled by hyperelastic vimentin intermediate filaments.
Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17175-17180. doi: 10.1073/pnas.1903890116. Epub 2019 Aug 13.
5
Advances in cancer immunotherapy 2019 - latest trends.
J Exp Clin Cancer Res. 2019 Jun 19;38(1):268. doi: 10.1186/s13046-019-1266-0.
6
MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices.
Nat Methods. 2019 Jul;16(7):619-626. doi: 10.1038/s41592-019-0433-8. Epub 2019 Jun 17.
7
Integrins as biomechanical sensors of the microenvironment.
Nat Rev Mol Cell Biol. 2019 Aug;20(8):457-473. doi: 10.1038/s41580-019-0134-2.
8
Future Options of Molecular-Targeted Therapy in Small Cell Lung Cancer.
Cancers (Basel). 2019 May 17;11(5):690. doi: 10.3390/cancers11050690.
9
Visco-Node-Pore Sensing: A Microfluidic Rheology Platform to Characterize Viscoelastic Properties of Epithelial Cells.
iScience. 2019 Mar 29;13:214-228. doi: 10.1016/j.isci.2019.02.021. Epub 2019 Feb 27.
10
Genetic Testing to Guide Risk-Stratified Screens for Breast Cancer.
J Pers Med. 2019 Mar 1;9(1):15. doi: 10.3390/jpm9010015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验