Suppr超能文献

欧洲商业资产洪水损失建模的暴露度与脆弱性评估

Exposure and vulnerability estimation for modelling flood losses to commercial assets in Europe.

作者信息

Paprotny Dominik, Kreibich Heidi, Morales-Nápoles Oswaldo, Castellarin Attilio, Carisi Francesca, Schröter Kai

机构信息

Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section Hydrology, Potsdam, Germany.

Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section Hydrology, Potsdam, Germany.

出版信息

Sci Total Environ. 2020 Oct 1;737:140011. doi: 10.1016/j.scitotenv.2020.140011. Epub 2020 Jun 16.

Abstract

Commercial assets comprise buildings, machinery and equipment, which are susceptible to floods. Existing damage models and exposure estimation methods for this sector have limited transferability between flood events and therefore limited potential for pan-European applications. In this study we introduce two methodologies aiming at improving commercial flood damage modelling: (1) disaggregation of economic statistics to obtain detailed building-level estimates of replacement costs of commercial assets; (2) a Bayesian Network (BN) damage model based primarily on post-disaster company surveys carried out in Germany. The BN model is probabilistic and provides probability distributions of estimated losses, and as such quantitative uncertainty information. The BN shows good accuracy of predictions of building losses, though overestimates machinery/equipment loss. To test its suitability for pan-European flood modelling, the BN was applied to three case studies, comprising a coastal flood in France (2010) and fluvial floods in Saxony (2013) and Italy (2014). Overall difference between modelled and reported average loss per company was only 2-19% depending on the case study. Additionally, the BN model achieved better results than six alternative damage models in those case studies (except for one model in the Italian case study). Further, our exposure estimates mostly resulted in better predictions of the damage models compared to previously published pan-European exposure data, which tend to overestimate exposure. All in all, the methods allow easy modelling of commercial flood losses in the whole of Europe, since they are applicable even if only publicly-available datasets are obtainable. The methods achieve a higher accuracy than alternative approaches, and inherently provide confidence intervals, which is particularly valuable for decision making under high uncertainty.

摘要

商业资产包括建筑物、机器和设备,这些都易受洪水影响。该领域现有的损失模型和暴露估计方法在不同洪水事件之间的可转移性有限,因此在泛欧洲应用方面的潜力也有限。在本研究中,我们引入了两种旨在改进商业洪水损失建模的方法:(1)对经济统计数据进行分解,以获得商业资产重置成本的详细建筑物层面估计;(2)一种主要基于在德国进行的灾后公司调查的贝叶斯网络(BN)损失模型。BN模型是概率性的,提供估计损失的概率分布,从而提供定量的不确定性信息。BN模型对建筑物损失的预测准确性较高,不过高估了机器/设备损失。为测试其在泛欧洲洪水建模中的适用性,将BN模型应用于三个案例研究,包括法国的一次沿海洪水(2010年)以及萨克森(2013年)和意大利(2014年)的河流洪水。根据案例研究的不同,建模损失与报告的每家公司平均损失之间的总体差异仅为2 - 19%。此外,在这些案例研究中,BN模型比六个替代损失模型取得了更好的结果(意大利案例研究中的一个模型除外)。此外,与之前发布的泛欧洲暴露数据相比,我们的暴露估计大多能更好地预测损失模型,之前的数据往往高估了暴露情况。总而言之,这些方法能够轻松地对整个欧洲的商业洪水损失进行建模,因为即使只能获取公开可用的数据集,它们也适用。这些方法比替代方法具有更高的准确性,并且本质上提供了置信区间,这对于在高度不确定性下进行决策尤为有价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验