ViDIR Group, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria.
Nat Med. 2020 Aug;26(8):1229-1234. doi: 10.1038/s41591-020-0942-0. Epub 2020 Jun 22.
The rapid increase in telemedicine coupled with recent advances in diagnostic artificial intelligence (AI) create the imperative to consider the opportunities and risks of inserting AI-based support into new paradigms of care. Here we build on recent achievements in the accuracy of image-based AI for skin cancer diagnosis to address the effects of varied representations of AI-based support across different levels of clinical expertise and multiple clinical workflows. We find that good quality AI-based support of clinical decision-making improves diagnostic accuracy over that of either AI or physicians alone, and that the least experienced clinicians gain the most from AI-based support. We further find that AI-based multiclass probabilities outperformed content-based image retrieval (CBIR) representations of AI in the mobile technology environment, and AI-based support had utility in simulations of second opinions and of telemedicine triage. In addition to demonstrating the potential benefits associated with good quality AI in the hands of non-expert clinicians, we find that faulty AI can mislead the entire spectrum of clinicians, including experts. Lastly, we show that insights derived from AI class-activation maps can inform improvements in human diagnosis. Together, our approach and findings offer a framework for future studies across the spectrum of image-based diagnostics to improve human-computer collaboration in clinical practice.
随着远程医疗的迅速发展以及诊断人工智能(AI)的最新进展,我们必须考虑在新的医疗模式中引入基于 AI 的支持所带来的机遇和风险。在此,我们基于图像 AI 在皮肤癌诊断方面的最新准确性成就,来探讨不同临床专业水平和多种临床工作流程下,基于 AI 的支持的不同表现形式所带来的影响。我们发现,基于 AI 的临床决策支持可以提高诊断准确性,优于 AI 或医生单独使用,而且经验最少的临床医生从基于 AI 的支持中获益最多。我们还发现,在移动技术环境中,基于 AI 的多类概率优于基于 AI 的基于内容的图像检索(CBIR)表示,并且 AI 支持在第二意见和远程医疗分诊的模拟中具有实用性。除了证明非专家临床医生手中高质量 AI 所带来的潜在好处外,我们还发现错误的 AI 可能会误导所有临床医生,包括专家。最后,我们表明,从 AI 类激活图中获得的见解可以为提高人类诊断水平提供信息。总之,我们的方法和发现为基于图像的诊断学的未来研究提供了一个框架,以改善临床实践中人机协作。