Suppr超能文献

人机协作进行皮肤癌识别。

Human-computer collaboration for skin cancer recognition.

机构信息

ViDIR Group, Department of Dermatology, Medical University of Vienna, Vienna, Austria.

Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria.

出版信息

Nat Med. 2020 Aug;26(8):1229-1234. doi: 10.1038/s41591-020-0942-0. Epub 2020 Jun 22.

Abstract

The rapid increase in telemedicine coupled with recent advances in diagnostic artificial intelligence (AI) create the imperative to consider the opportunities and risks of inserting AI-based support into new paradigms of care. Here we build on recent achievements in the accuracy of image-based AI for skin cancer diagnosis to address the effects of varied representations of AI-based support across different levels of clinical expertise and multiple clinical workflows. We find that good quality AI-based support of clinical decision-making improves diagnostic accuracy over that of either AI or physicians alone, and that the least experienced clinicians gain the most from AI-based support. We further find that AI-based multiclass probabilities outperformed content-based image retrieval (CBIR) representations of AI in the mobile technology environment, and AI-based support had utility in simulations of second opinions and of telemedicine triage. In addition to demonstrating the potential benefits associated with good quality AI in the hands of non-expert clinicians, we find that faulty AI can mislead the entire spectrum of clinicians, including experts. Lastly, we show that insights derived from AI class-activation maps can inform improvements in human diagnosis. Together, our approach and findings offer a framework for future studies across the spectrum of image-based diagnostics to improve human-computer collaboration in clinical practice.

摘要

随着远程医疗的迅速发展以及诊断人工智能(AI)的最新进展,我们必须考虑在新的医疗模式中引入基于 AI 的支持所带来的机遇和风险。在此,我们基于图像 AI 在皮肤癌诊断方面的最新准确性成就,来探讨不同临床专业水平和多种临床工作流程下,基于 AI 的支持的不同表现形式所带来的影响。我们发现,基于 AI 的临床决策支持可以提高诊断准确性,优于 AI 或医生单独使用,而且经验最少的临床医生从基于 AI 的支持中获益最多。我们还发现,在移动技术环境中,基于 AI 的多类概率优于基于 AI 的基于内容的图像检索(CBIR)表示,并且 AI 支持在第二意见和远程医疗分诊的模拟中具有实用性。除了证明非专家临床医生手中高质量 AI 所带来的潜在好处外,我们还发现错误的 AI 可能会误导所有临床医生,包括专家。最后,我们表明,从 AI 类激活图中获得的见解可以为提高人类诊断水平提供信息。总之,我们的方法和发现为基于图像的诊断学的未来研究提供了一个框架,以改善临床实践中人机协作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验