Suppr超能文献

基于一阶和二阶导数的非局部全变差及其在 CT 图像重建中的应用。

Nonlocal Total Variation Using the First and Second Order Derivatives and Its Application to CT Image Reconstruction.

机构信息

Department of Computer Science, Graduate School of Systems and Information Engineering, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Japan.

出版信息

Sensors (Basel). 2020 Jun 20;20(12):3494. doi: 10.3390/s20123494.

Abstract

We propose a new class of nonlocal Total Variation (TV), in which the first derivative and the second derivative are mixed. Since most existing TV considers only the first-order derivative, it suffers from problems such as staircase artifacts and loss in smooth intensity changes for textures and low-contrast objects, which is a major limitation in improving image quality. The proposed nonlocal TV combines the first and second order derivatives to preserve smooth intensity changes well. Furthermore, to accelerate the iterative algorithm to minimize the cost function using the proposed nonlocal TV, we propose a proximal splitting based on Passty's framework. We demonstrate that the proposed nonlocal TV method achieves adequate image quality both in sparse-view CT and low-dose CT, through simulation studies using a brain CT image with a very narrow contrast range for which it is rather difficult to preserve smooth intensity changes.

摘要

我们提出了一类新的非局部全变差(TV),其中混合了一阶导数和二阶导数。由于大多数现有的 TV 仅考虑一阶导数,因此存在一些问题,如阶梯伪影和纹理及低对比度物体的平滑强度变化损失,这是提高图像质量的主要限制。所提出的非局部 TV 结合了一阶和二阶导数,可很好地保持平滑强度变化。此外,为了使用所提出的非局部 TV 加速最小化代价函数的迭代算法,我们提出了一种基于 Passty 框架的近分裂方法。我们通过使用非常狭窄对比度范围的脑部 CT 图像进行的模拟研究证明,所提出的非局部 TV 方法在稀疏视图 CT 和低剂量 CT 中都能获得足够的图像质量,对于这种方法,保持平滑的强度变化是相当困难的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/917e/7349404/64997765e88a/sensors-20-03494-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验