Marković Igor, Watson Matthew D, Clark Oliver J, Mazzola Federico, Abarca Morales Edgar, Hooley Chris A, Rosner Helge, Polley Craig M, Balasubramanian Thiagarajan, Mukherjee Saumya, Kikugawa Naoki, Sokolov Dmitry A, Mackenzie Andrew P, King Phil D C
Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom.
Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany.
Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15524-15529. doi: 10.1073/pnas.2003671117. Epub 2020 Jun 23.
The interplay between spin-orbit coupling and structural inversion symmetry breaking in solids has generated much interest due to the nontrivial spin and magnetic textures which can result. Such studies are typically focused on systems where large atomic number elements lead to strong spin-orbit coupling, in turn rendering electronic correlations weak. In contrast, here we investigate the temperature-dependent electronic structure of [Formula: see text], a [Formula: see text] oxide metal for which both correlations and spin-orbit coupling are pronounced and in which octahedral tilts and rotations combine to mediate both global and local inversion symmetry-breaking polar distortions. Our angle-resolved photoemission measurements reveal the destruction of a large hole-like Fermi surface upon cooling through a coupled structural and spin-reorientation transition at 48 K, accompanied by a sudden onset of quasiparticle coherence. We demonstrate how these result from band hybridization mediated by a hidden Rashba-type spin-orbit coupling. This is enabled by the bulk structural distortions and unlocked when the spin reorients perpendicular to the local symmetry-breaking potential at the Ru sites. We argue that the electronic energy gain associated with the band hybridization is actually the key driver for the phase transition, reflecting a delicate interplay between spin-orbit coupling and strong electronic correlations and revealing a route to control magnetic ordering in solids.
固体中自旋轨道耦合与结构反演对称性破缺之间的相互作用,由于可能产生的非平凡自旋和磁纹理而引起了广泛关注。此类研究通常聚焦于大原子序数元素导致强自旋轨道耦合,进而使电子关联变弱的系统。相比之下,我们在此研究了[化学式:见原文]的温度依赖电子结构,这是一种[化学式:见原文]氧化物金属,其中关联和自旋轨道耦合都很显著,且八面体倾斜和旋转共同作用,介导了整体和局部的反演对称性破缺极性畸变。我们的角分辨光电子能谱测量结果表明,在48 K时通过结构和自旋重取向耦合转变冷却时,一个大的空穴型费米面遭到破坏,同时准粒子相干性突然出现。我们证明了这些结果是由隐藏的拉什巴型自旋轨道耦合介导的能带杂化所致。这是由体结构畸变促成的,并且当自旋在Ru位点垂直于局部对称性破缺势重取向时开启。我们认为,与能带杂化相关的电子能量增益实际上是相变的关键驱动力,反映了自旋轨道耦合与强电子关联之间的微妙相互作用,并揭示了一种控制固体中磁有序的途径。