Montoya Eric Arturo, Chen Jen-Ru, Ngelale Randy, Lee Han Kyu, Tseng Hsin-Wei, Wan Lei, Yang En, Braganca Patrick, Boyraz Ozdal, Bagherzadeh Nader, Nilsson Mikael, Krivorotov Ilya N
Department of Physics and Astronomy, University of California, Irvine, California, 92697, United States.
Department of Chemical Engineering and Materials Science, University of California, Irvine, California, 92697, United States.
Sci Rep. 2020 Jun 23;10(1):10220. doi: 10.1038/s41598-020-67257-2.
Spin transfer torque magnetic random access memory (STT-MRAM) is a promising candidate for next generation memory as it is non-volatile, fast, and has unlimited endurance. Another important aspect of STT-MRAM is that its core component, the nanoscale magnetic tunneling junction (MTJ), is thought to be radiation hard, making it attractive for space and nuclear technology applications. However, studies on the effects of ionizing radiation on the STT-MRAM writing process are lacking for MTJs with perpendicular magnetic anisotropy (pMTJs) required for scalable applications. Particularly, the question of the impact of extreme total ionizing dose on perpendicular magnetic anisotropy, which plays a crucial role on thermal stability and critical writing current, remains open. Here we report measurements of the impact of high doses of gamma and neutron radiation on nanoscale pMTJs used in STT-MRAM. We characterize the tunneling magnetoresistance, the magnetic field switching, and the current-induced switching before and after irradiation. Our results demonstrate that all these key properties of nanoscale MTJs relevant to STT-MRAM applications are robust against ionizing radiation. Additionally, we perform experiments on thermally driven stochastic switching in the gamma ray environment. These results indicate that nanoscale MTJs are promising building blocks for radiation-hard non-von Neumann computing.
自旋转移矩磁性随机存取存储器(STT-MRAM)是下一代存储器的有力候选者,因为它具有非易失性、速度快且耐久性无限的特点。STT-MRAM的另一个重要方面是,其核心组件——纳米级磁性隧道结(MTJ)——被认为具有抗辐射能力,这使其在空间和核技术应用中具有吸引力。然而,对于可扩展应用所需的具有垂直磁各向异性的MTJ(pMTJ),缺乏关于电离辐射对STT-MRAM写入过程影响的研究。特别是,极端总电离剂量对垂直磁各向异性的影响问题仍然悬而未决,而垂直磁各向异性对热稳定性和临界写入电流起着至关重要的作用。在此,我们报告了高剂量伽马和中子辐射对用于STT-MRAM的纳米级pMTJ的影响的测量结果。我们对辐照前后的隧道磁电阻、磁场切换和电流诱导切换进行了表征。我们的结果表明,与STT-MRAM应用相关的纳米级MTJ的所有这些关键特性对电离辐射具有鲁棒性。此外,我们在伽马射线环境中进行了热驱动随机切换实验。这些结果表明,纳米级MTJ是抗辐射非冯·诺依曼计算的有前途的构建模块。