Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP*, INAC-SPINTEC, 38000 Grenoble, France.
Nanoscale. 2018 Jul 5;10(25):12187-12195. doi: 10.1039/c8nr01365a.
A new approach to increase the downsize scalability of perpendicular STT-MRAM is presented. It consists of significantly increasing the thickness of the storage layer in out-of-plane magnetized tunnel junctions (pMTJ) as compared to conventional pMTJ in order to induce a perpendicular shape anisotropy (PSA) in this layer. This PSA is obtained by depositing a thick ferromagnetic (FM) layer on top of an MgO/FeCoB based magnetic tunnel junction (MTJ) so that the thickness of the storage layer is of the order of or larger than the diameter of the MTJ pillar. In contrast to conventional spin transfer torque magnetic random access memory (STT-MRAM) wherein the demagnetizing energy opposes the interfacial perpendicular magnetic anisotropy (iPMA), in these novel memory cells, both PSA and iPMA contributions favor the out-of-plane orientation of the storage layer magnetization. Using thicker storage layers in these PSA-STT-MRAMs has several advantages. Due to the PSA, very high and easily tunable thermal stability factors can be achieved, even down to sub-10 nm diameters. Moreover, a low damping material can be used for the thick FM material thus leading to a reduction of the write current. The paper describes this new PSA-STT-MRAM concept, practical realization of such memory arrays, magnetic characterization demonstrating thermal stability factor above 200 for MTJs as small as 8 nm in diameter and possibility to maintain the thermal stability factor above 60 down to 4 nm diameter.
提出了一种新方法来提高垂直 STT-MRAM 的缩小比例可扩展性。与传统的面内磁化隧道结 (pMTJ) 相比,它显著增加了存储层的厚度,以便在该层中诱导出垂直形状各向异性 (PSA)。通过在基于 MgO/FeCoB 的磁性隧道结 (MTJ) 上沉积一层厚的铁磁 (FM) 层,可以获得这种 PSA,使得存储层的厚度大约等于或大于 MTJ 支柱的直径。与传统的自旋转移扭矩磁随机存取存储器 (STT-MRAM) 中反磁化能与界面垂直各向异性 (iPMA) 相反,在这些新型存储单元中,PSA 和 iPMA 都有利于存储层磁化的面外取向。在这些 PSA-STT-MRAM 中使用更厚的存储层具有几个优点。由于 PSA,可以实现非常高且易于调节的热稳定性因子,即使降至小于 10nm 的直径。此外,可以为厚的 FM 材料使用低阻尼材料,从而降低写入电流。本文描述了这种新的 PSA-STT-MRAM 概念、这种存储阵列的实际实现、磁特性表征,证明了直径小至 8nm 的 MTJ 的热稳定性因子超过 200,并且有可能将热稳定性因子保持在 60 以上,直至直径为 4nm。