Unité Mixte de Physique CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, 91767, Palaiseau, France.
Centre de Nanosciences et de Nanotechnologies, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405, Orsay, France.
Nat Commun. 2018 Apr 18;9(1):1533. doi: 10.1038/s41467-018-03963-w.
In neuroscience, population coding theory demonstrates that neural assemblies can achieve fault-tolerant information processing. Mapped to nanoelectronics, this strategy could allow for reliable computing with scaled-down, noisy, imperfect devices. Doing so requires that the population components form a set of basis functions in terms of their response functions to inputs, offering a physical substrate for computing. Such a population can be implemented with CMOS technology, but the corresponding circuits have high area or energy requirements. Here, we show that nanoscale magnetic tunnel junctions can instead be assembled to meet these requirements. We demonstrate experimentally that a population of nine junctions can implement a basis set of functions, providing the data to achieve, for example, the generation of cursive letters. We design hybrid magnetic-CMOS systems based on interlinked populations of junctions and show that they can learn to realize non-linear variability-resilient transformations with a low imprint area and low power.
在神经科学中,群体编码理论表明,神经元集合可以实现容错信息处理。将这一策略映射到纳米电子学上,可以允许使用规模缩小、嘈杂和不完善的设备进行可靠的计算。要做到这一点,群体成分必须在其对输入的响应函数方面形成一组基函数,为计算提供物理基础。这样的群体可以用 CMOS 技术来实现,但相应的电路需要占用大量的面积或消耗大量的能量。在这里,我们展示了纳米级的磁性隧道结可以替代实现这些要求。我们通过实验证明,由九个结组成的群体可以实现一组基函数,提供了生成连笔字母等数据的实现方法。我们设计了基于磁性隧道结互联群体的混合磁-CMOS 系统,并展示了它们可以学习实现具有低印迹面积和低功耗的非线性、变异性和弹性变换。