Muñoz Ana, Lopez-Lopez Andrea, Labandeira Carmen M, Labandeira-Garcia Jose L
Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Deptartment of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.
Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain.
Front Neuroanat. 2020 Jun 4;14:26. doi: 10.3389/fnana.2020.00026. eCollection 2020.
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. However, other non-dopaminergic neuronal systems such as the serotonergic system are also involved. Serotonergic dysfunction is associated with non-motor symptoms and complications, including anxiety, depression, dementia, and sleep disturbances. This pathology reduces patient quality of life. Interaction between the serotonergic and other neurotransmitters systems such as dopamine, noradrenaline, glutamate, and GABA controls the activity of striatal neurons and are particularly interesting for understanding the pathophysiology of PD. Moreover, serotonergic dysfunction also causes motor symptoms. Interestingly, serotonergic neurons play an important role in the effects of L-DOPA in advanced PD stages. Serotonergic terminals can convert L-DOPA to dopamine, which mediates dopamine release as a "false" transmitter. The lack of any autoregulatory feedback control in serotonergic neurons to regulate L-DOPA-derived dopamine release contributes to the appearance of L-DOPA-induced dyskinesia (LID). This mechanism may also be involved in the development of graft-induced dyskinesias (GID), possibly due to the inclusion of serotonin neurons in the grafted tissue. Consistent with this, the administration of serotonergic agonists suppressed LID. In this review article, we summarize the interactions between the serotonergic and other systems. We also discuss the role of the serotonergic system in LID and if therapeutic approaches specifically targeting this system may constitute an effective strategy in PD.
帕金森病(PD)的特征是黑质中多巴胺能神经元的渐进性丧失。然而,其他非多巴胺能神经元系统,如血清素能系统也参与其中。血清素能功能障碍与非运动症状和并发症有关,包括焦虑、抑郁、痴呆和睡眠障碍。这种病理状况会降低患者的生活质量。血清素能系统与其他神经递质系统(如多巴胺、去甲肾上腺素、谷氨酸和γ-氨基丁酸)之间的相互作用控制着纹状体神经元的活动,对于理解PD的病理生理学尤为重要。此外,血清素能功能障碍也会导致运动症状。有趣的是,血清素能神经元在晚期PD阶段左旋多巴(L-DOPA)的作用中起着重要作用。血清素能终末可以将L-DOPA转化为多巴胺,作为“假”递质介导多巴胺释放。血清素能神经元缺乏任何自动调节反馈控制来调节L-DOPA衍生的多巴胺释放,这导致了L-DOPA诱导的异动症(LID)的出现。这种机制也可能参与移植诱导的异动症(GID)的发生,可能是由于移植组织中包含血清素神经元。与此一致的是,给予血清素能激动剂可抑制LID。在这篇综述文章中,我们总结了血清素能系统与其他系统之间的相互作用。我们还讨论了血清素能系统在LID中的作用,以及专门针对该系统的治疗方法是否可能构成PD的有效策略。