Belloli Sara, Morari Michele, Murtaj Valentina, Valtorta Silvia, Moresco Rosa Maria, Gilardi Maria Carla
Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Milan, Italy.
Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy.
Front Aging Neurosci. 2020 Jun 5;12:152. doi: 10.3389/fnagi.2020.00152. eCollection 2020.
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the appearance of α-synuclein insoluble aggregates known as Lewy bodies. Neurodegeneration is accompanied by neuroinflammation mediated by cytokines and chemokines produced by the activated microglia. Several studies demonstrated that such an inflammatory process is an early event, and contributes to oxidative stress and mitochondrial dysfunctions. α-synuclein fibrillization and aggregation activate microglia and contribute to disease onset and progression. Mutations in different genes exacerbate the inflammatory phenotype in the monogenic compared to sporadic forms of PD. Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) with selected radiopharmaceuticals allow imaging of molecular modifications in the brain of living subjects. Several publications showed a reduction of dopaminergic terminals and dopamine (DA) content in the basal ganglia, starting from the early stages of the disease. Moreover, non-dopaminergic neuronal pathways are also affected, as shown by studies with serotonergic and glutamatergic radiotracers. The role played by the immune system during illness progression could be investigated with PET ligands that target the microglia/macrophage Translocator protein (TSPO) receptor. These agents have been used in PD patients and rodent models, although often without attempting correlations with other molecular or functional parameters. For example, neurodegeneration and brain plasticity can be monitored using the metabolic marker 2-Deoxy-2-[F]fluoroglucose ([F]-FDG), while oxidative stress can be probed using the copper-labeled diacetyl-bis(N-methyl-thiosemicarbazone) ([Cu]-ATSM) radioligand, whose striatal-specific binding ratio in PD patients seems to correlate with a disease rating scale and motor scores. Also, structural and functional modifications during disease progression may be evaluated by Magnetic Resonance Imaging (MRI), using different parameters as iron content or cerebral volume. In this review article, we propose an overview of clinical and non-clinical imaging research on neuroinflammation as an emerging marker of early PD. We also discuss how multimodal-imaging approaches could provide more insights into the role of the inflammatory process and related events in PD development.
帕金森病(PD)的特征是黑质致密部(SNpc)中多巴胺能神经元的丧失以及被称为路易小体的α-突触核蛋白不溶性聚集体的出现。神经退行性变伴随着由活化的小胶质细胞产生的细胞因子和趋化因子介导的神经炎症。多项研究表明,这种炎症过程是一个早期事件,并导致氧化应激和线粒体功能障碍。α-突触核蛋白的纤维化和聚集激活小胶质细胞,并促进疾病的发生和进展。与散发性PD相比,不同基因的突变会加剧单基因形式的炎症表型。使用选定的放射性药物进行正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)可以对活体受试者大脑中的分子修饰进行成像。一些出版物表明,从疾病早期开始,基底神经节中的多巴胺能终末和多巴胺(DA)含量就会减少。此外,如使用血清素能和谷氨酸能放射性示踪剂的研究所显示的,非多巴胺能神经元通路也会受到影响。免疫系统在疾病进展过程中所起的作用可以通过靶向小胶质细胞/巨噬细胞转位蛋白(TSPO)受体的PET配体来研究。这些药物已被用于PD患者和啮齿动物模型,尽管通常没有尝试与其他分子或功能参数进行关联。例如,神经退行性变和脑可塑性可以使用代谢标记物2-脱氧-2-[F]氟葡萄糖([F]-FDG)进行监测,而氧化应激可以使用铜标记的双乙酰双(N-甲基硫代半卡巴腙)([Cu]-ATSM)放射性配体进行探测,其在PD患者纹状体中的特异性结合率似乎与疾病评分量表和运动评分相关。此外,在疾病进展过程中的结构和功能修饰可以通过磁共振成像(MRI),使用铁含量或脑容量等不同参数进行评估。在这篇综述文章中,我们概述了作为早期PD新兴标志物的神经炎症的临床和非临床成像研究。我们还讨论了多模态成像方法如何能更深入地了解炎症过程及相关事件在PD发展中的作用。