Francisco Fritz A, Nührenberg Paul, Jordan Alex
Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, Konstanz, 78457 Germany.
Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitätsstraße 10, Konstanz, 78457 Germany.
Mov Ecol. 2020 Jun 23;8:27. doi: 10.1186/s40462-020-00214-w. eCollection 2020.
Acquiring high resolution quantitative behavioural data underwater often involves installation of costly infrastructure, or capture and manipulation of animals. Aquatic movement ecology can therefore be limited in taxonomic range and ecological coverage.
Here we present a novel deep-learning based, multi-individual tracking approach, which incorporates Structure-from-Motion in order to determine the 3D location, body position and the visual environment of every recorded individual. The application is based on low-cost cameras and does not require the animals to be confined, manipulated, or handled in any way.
Using this approach, single individuals, small heterospecific groups and schools of fish were tracked in freshwater and marine environments of varying complexity. Positional tracking errors as low as 1.09 ± 0.47 cm (RSME) in underwater areas up to 500 m were recorded.
This cost-effective and open-source framework allows the analysis of animal behaviour in aquatic systems at an unprecedented resolution. Implementing this versatile approach, quantitative behavioural analysis can be employed in a wide range of natural contexts, vastly expanding our potential for examining non-model systems and species.
在水下获取高分辨率的定量行为数据通常需要安装昂贵的基础设施,或者对动物进行捕捉和操控。因此,水生运动生态学在分类范围和生态覆盖面上可能会受到限制。
在此,我们提出一种基于深度学习的新型多个体跟踪方法,该方法结合了运动结构法,以确定每个记录个体的三维位置、身体姿态和视觉环境。该应用基于低成本相机,且无需以任何方式限制、操控或处理动物。
使用这种方法,在不同复杂程度的淡水和海洋环境中对单个个体、小型异种群体和鱼群进行了跟踪。在高达500米的水下区域,记录到的位置跟踪误差低至1.09±0.47厘米(均方根误差)。
这个具有成本效益的开源框架允许以前所未有的分辨率分析水生系统中的动物行为。通过实施这种通用方法,定量行为分析可应用于广泛的自然环境中,极大地扩展了我们研究非模式系统和物种的潜力。