Imperial College London Silwood Park, Buckhurst Road, Berks, SL5 7PY, UK.
McGill University Department of Biology, 1205 Dr Penfield Ave, Montreal, QC, H3A 1B1, Canada.
Commun Biol. 2024 May 28;7(1):653. doi: 10.1038/s42003-024-06350-y.
Metabolic rate, the rate of energy use, underpins key ecological traits of organisms, from development and locomotion to interaction rates between individuals. In a warming world, the temperature-dependence of metabolic rate is anticipated to shift predator-prey dynamics. Yet, there is little real-world evidence on the effects of warming on trophic interactions. We measured the respiration rates of aquatic larvae of three insect species from populations experiencing a natural temperature gradient in a large-scale mesocosm experiment. Using a mechanistic model we predicted the effects of warming on these taxa's predator-prey interaction rates. We found that species-specific differences in metabolic plasticity lead to mismatches in the temperature-dependence of their relative velocities, resulting in altered predator-prey interaction rates. This study underscores the role of metabolic plasticity at the species level in modifying trophic interactions and proposes a mechanistic modelling approach that allows an efficient, high-throughput estimation of climate change threats across species pairs.
代谢率是能量利用的速率,它是生物关键生态特征的基础,从发育和运动到个体之间的相互作用速率。在全球变暖的情况下,预计代谢率对温度的依赖性将改变捕食者-猎物的动态。然而,关于变暖对营养相互作用影响的实际证据很少。我们在一个大规模的中观生态系统实验中,测量了三种昆虫物种的水生幼虫在自然温度梯度下的呼吸率。利用一个机械模型,我们预测了变暖对这些分类群的捕食者-猎物相互作用率的影响。我们发现,代谢可塑性的种间差异导致它们相对速度对温度的依赖性不匹配,从而改变了捕食者-猎物的相互作用率。这项研究强调了物种水平代谢可塑性在改变营养相互作用中的作用,并提出了一种机械建模方法,该方法可以高效、高通量地估计跨物种对的气候变化威胁。