Suppr超能文献

一种基于特征融合与优化协议的DNA N6-甲基腺嘌呤修饰预测的生物信息学工具。

A Bioinformatics Tool for the Prediction of DNA N6-Methyladenine Modifications Based on Feature Fusion and Optimization Protocol.

作者信息

Cai Jianhua, Wang Donghua, Chen Riqing, Niu Yuzhen, Ye Xiucai, Su Ran, Xiao Guobao, Wei Leyi

机构信息

Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University, Fuzhou, China.

College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China.

出版信息

Front Bioeng Biotechnol. 2020 Jun 4;8:502. doi: 10.3389/fbioe.2020.00502. eCollection 2020.

Abstract

DNA N-methyladenine (6mA) is closely involved with various biological processes. Identifying the distributions of 6mA modifications in genome-scale is of great significance to in-depth understand the functions. In recent years, various experimental and computational methods have been proposed for this purpose. Unfortunately, existing methods cannot provide accurate and fast 6mA prediction. In this study, we present 6mAPred-FO, a bioinformatics tool that enables researchers to make predictions based on sequences only. To sufficiently capture the characteristics of 6mA sites, we integrate the sequence-order information with nucleotide positional specificity information for feature encoding, and further improve the feature representation capacity by analysis of variance-based feature optimization protocol. The experimental results show that using this feature protocol, we can significantly improve the predictive performance. Via further feature analysis, we found that the sequence-order information and positional specificity information are complementary to each other, contributing to the performance improvement. On the other hand, the improvement is also due to the use of the feature optimization protocol, which is capable of effectively capturing the most informative features from the original feature space. Moreover, benchmarking comparison results demonstrate that our 6mAPred-FO outperforms several existing predictors. Finally, we establish a web-server that implements the proposed method for convenience of researchers' use, which is currently available at http://server.malab.cn/6mAPred-FO.

摘要

DNA N-甲基腺嘌呤(6mA)与多种生物学过程密切相关。在全基因组范围内识别6mA修饰的分布对于深入理解其功能具有重要意义。近年来,为此目的提出了各种实验和计算方法。不幸的是,现有方法无法提供准确快速的6mA预测。在本研究中,我们提出了6mAPred-FO,这是一种生物信息学工具,使研究人员能够仅基于序列进行预测。为了充分捕捉6mA位点的特征,我们将序列顺序信息与核苷酸位置特异性信息整合用于特征编码,并通过基于方差分析的特征优化协议进一步提高特征表示能力。实验结果表明,使用此特征协议,我们可以显著提高预测性能。通过进一步的特征分析,我们发现序列顺序信息和位置特异性信息相互补充,有助于性能提升。另一方面,性能的提升还归因于特征优化协议的使用,该协议能够从原始特征空间中有效捕捉最具信息性的特征。此外,基准比较结果表明我们的6mAPred-FO优于几种现有的预测器。最后,我们建立了一个网络服务器来实现所提出的方法,方便研究人员使用,目前可在http://server.malab.cn/6mAPred-FO获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7470/7287168/4ad8fc8bd5ea/fbioe-08-00502-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验