Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Strasbourg, CS, 60024, France.
Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630003, India.
Small. 2020 Aug;16(32):e2002494. doi: 10.1002/smll.202002494. Epub 2020 Jun 25.
Luminescent oxygen probes enable direct imaging of hypoxic conditions in cells and tissues, which are associated with a variety of diseases, including cancer. Here, a nanoparticle probe that addresses key challenges in the field is developed, it: i) strongly amplifies room temperature phosphorescence of encapsulated oxygen-sensitive dyes; ii) provides ratiometric response to oxygen; and iii) solves the fundamental problem of phototoxicity of phosphorescent sensors. The nanoprobe is based on 40 nm polymeric nanoparticles, encapsulating ≈2000 blue-emitting cyanine dyes with fluorinated tetraphenylborate counterions, which are as bright as 70 quantum dots (QD525). It functions as a light-harvesting nanoantenna that undergoes efficient Förster resonance energy transfer to ≈20 phosphorescent oxygen-sensitive platinum octaethylporphyrin (PtOEP) acceptor dyes. The obtained nanoprobe emits stable blue fluorescence and oxygen-sensitive red phosphorescence, providing ratiometric response to dissolved oxygen. The light harvesting leads to ≈60-fold phosphorescence amplification and makes the single nanoprobe particle as bright as ≈1200 PtOEP dyes. This high brightness enables oxygen detection at a single-particle level and in cells at ultra-low nanoprobe concentration with no sign of phototoxicity, in contrast to PtOEP dye. The developed nanoprobe is successfully applied to the imaging of a microfluidics-generated oxygen gradient in cancer cells. It constitutes a promising tool for bioimaging of hypoxia.
发光氧探针能够直接对细胞和组织中的缺氧条件进行成像,这些条件与多种疾病有关,包括癌症。在此,开发了一种解决该领域关键挑战的纳米颗粒探针,其:i)强烈放大了封装的氧敏染料的室温磷光;ii)对氧提供了比率响应;iii)解决了磷光传感器的光毒性的根本问题。该纳米探针基于 40nm 聚合物纳米颗粒,封装了 ≈2000 个带有氟化四苯硼酸盐抗衡离子的蓝色发射氰染料,其亮度与 70 个量子点(QD525)相当。它作为一个光收集纳米天线,经历有效的Förster 共振能量转移到 ≈20 个磷光氧敏的铂八乙基卟啉(PtOEP)受体染料。所得到的纳米探针发出稳定的蓝色荧光和氧敏红色磷光,对溶解氧提供了比率响应。光收集导致磷光放大了约 60 倍,使得单个纳米探针颗粒的亮度与 ≈1200 个 PtOEP 染料相当。这种高亮度使得能够在单个颗粒水平和在细胞中进行超低纳米探针浓度下的氧检测,而没有光毒性的迹象,与 PtOEP 染料形成对比。所开发的纳米探针成功地应用于癌细胞中微流控产生的氧梯度的成像。它构成了缺氧生物成像的有前途的工具。