Suppr超能文献

颅内记录揭示人类腹侧颞叶皮层中重复抑制的多样化时间动态。

Diverse Temporal Dynamics of Repetition Suppression Revealed by Intracranial Recordings in the Human Ventral Temporal Cortex.

机构信息

Department of Psychology, University of California, Berkeley, CA 94720, USA.

Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.

出版信息

Cereb Cortex. 2020 Oct 1;30(11):5988-6003. doi: 10.1093/cercor/bhaa173.

Abstract

Repeated stimulus presentations commonly produce decreased neural responses-a phenomenon known as repetition suppression (RS) or adaptation-in ventral temporal cortex (VTC) of humans and nonhuman primates. However, the temporal features of RS in human VTC are not well understood. To fill this gap in knowledge, we utilized the precise spatial localization and high temporal resolution of electrocorticography (ECoG) from nine human subjects implanted with intracranial electrodes in the VTC. The subjects viewed nonrepeated and repeated images of faces with long-lagged intervals and many intervening stimuli between repeats. We report three main findings: 1) robust RS occurs in VTC for activity in high-frequency broadband (HFB), but not lower-frequency bands; 2) RS of the HFB signal is associated with lower peak magnitude (PM), lower total responses, and earlier peak responses; and 3) RS effects occur early within initial stages of stimulus processing and persist for the entire stimulus duration. We discuss these findings in the context of early and late components of visual perception, as well as theoretical models of repetition suppression.

摘要

重复刺激通常会导致神经反应减弱,这一现象在人类和非人类灵长类动物的腹侧颞叶皮层(VTC)中被称为重复抑制(RS)或适应。然而,人类 VTC 中 RS 的时间特征还不是很清楚。为了填补这一知识空白,我们利用了九名植入颅内电极的 VTC 人类受试者的皮层电图(ECoG)的精确空间定位和高时间分辨率。这些受试者观看了具有长延迟间隔和许多重复之间的介入刺激的非重复和重复的面孔图像。我们报告了三个主要发现:1)在高频宽带(HFB)的活动中,VTC 中会出现强大的 RS,但在较低频率带中不会出现;2)HFB 信号的 RS 与较低的峰值幅度(PM)、较低的总反应和较早的峰值反应相关;3)RS 效应在刺激处理的初始阶段很早就发生,并持续整个刺激持续时间。我们将这些发现置于视觉感知的早期和晚期成分以及重复抑制的理论模型的背景下进行了讨论。

相似文献

2
Corresponding ECoG and fMRI category-selective signals in human ventral temporal cortex.
Neuropsychologia. 2016 Mar;83:14-28. doi: 10.1016/j.neuropsychologia.2015.07.024. Epub 2015 Jul 23.
3
fMRI-adaptation and category selectivity in human ventral temporal cortex: regional differences across time scales.
J Neurophysiol. 2010 Jun;103(6):3349-65. doi: 10.1152/jn.01108.2009. Epub 2010 Apr 7.
4
5
Within- and between-hemifield generalization of repetition suppression in inferior temporal cortex.
J Neurophysiol. 2021 Jan 1;125(1):120-139. doi: 10.1152/jn.00361.2020. Epub 2020 Nov 11.
6
Ultra-high-resolution fMRI of Human Ventral Temporal Cortex Reveals Differential Representation of Categories and Domains.
J Neurosci. 2020 Apr 8;40(15):3008-3024. doi: 10.1523/JNEUROSCI.2106-19.2020. Epub 2020 Feb 24.
7
Face Repetition Probability Does Not Affect Repetition Suppression in Macaque Inferotemporal Cortex.
J Neurosci. 2018 Aug 22;38(34):7492-7504. doi: 10.1523/JNEUROSCI.0462-18.2018. Epub 2018 Jul 20.
8
Temporal Dynamics and Response Modulation across the Human Visual System in a Spatial Attention Task: An ECoG Study.
J Neurosci. 2019 Jan 9;39(2):333-352. doi: 10.1523/JNEUROSCI.1889-18.2018. Epub 2018 Nov 20.
9
Repetition probability effects for inverted faces.
Neuroimage. 2014 Nov 15;102 Pt 2:416-23. doi: 10.1016/j.neuroimage.2014.08.006. Epub 2014 Aug 11.
10
The physiology of perception in human temporal lobe is specialized for contextual novelty.
J Neurophysiol. 2015 Jul;114(1):256-63. doi: 10.1152/jn.00131.2015. Epub 2015 May 13.

引用本文的文献

1
Attenuation of High Gamma Activity by Repetitive Motor Tasks.
Hum Brain Mapp. 2025 Feb 1;46(2):e70153. doi: 10.1002/hbm.70153.
2
Temporal dynamics of short-term neural adaptation across human visual cortex.
PLoS Comput Biol. 2024 May 30;20(5):e1012161. doi: 10.1371/journal.pcbi.1012161. eCollection 2024 May.
3
A rapid theta network mechanism for flexible information encoding.
Nat Commun. 2023 May 19;14(1):2872. doi: 10.1038/s41467-023-38574-7.
4
Single-neuron mechanisms of neural adaptation in the human temporal lobe.
Nat Commun. 2023 Apr 29;14(1):2496. doi: 10.1038/s41467-023-38190-5.
5
Temporally and functionally distinct large-scale brain network dynamics supporting task switching.
Neuroimage. 2022 Jul 1;254:119126. doi: 10.1016/j.neuroimage.2022.119126. Epub 2022 Mar 22.
6
Automatic Sensory Predictions: A Review of Predictive Mechanisms in the Brain and Their Link to Conscious Processing.
Front Hum Neurosci. 2021 Aug 18;15:702520. doi: 10.3389/fnhum.2021.702520. eCollection 2021.

本文引用的文献

1
Predicting neuronal dynamics with a delayed gain control model.
PLoS Comput Biol. 2019 Nov 20;15(11):e1007484. doi: 10.1371/journal.pcbi.1007484. eCollection 2019 Nov.
2
Probing the Mechanisms of Repetition Suppression in Inferior Temporal Cortex with Optogenetics.
Curr Biol. 2019 Jun 17;29(12):1988-1998.e4. doi: 10.1016/j.cub.2019.05.014. Epub 2019 Jun 6.
3
Differential sustained and transient temporal processing across visual streams.
PLoS Comput Biol. 2019 May 30;15(5):e1007011. doi: 10.1371/journal.pcbi.1007011. eCollection 2019 May.
5
Forward models demonstrate that repetition suppression is best modelled by local neural scaling.
Nat Commun. 2018 Sep 21;9(1):3854. doi: 10.1038/s41467-018-05957-0.
7
Face Repetition Probability Does Not Affect Repetition Suppression in Macaque Inferotemporal Cortex.
J Neurosci. 2018 Aug 22;38(34):7492-7504. doi: 10.1523/JNEUROSCI.0462-18.2018. Epub 2018 Jul 20.
8
Encoding model of temporal processing in human visual cortex.
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):E11047-E11056. doi: 10.1073/pnas.1704877114. Epub 2017 Dec 5.
9
Compressive Temporal Summation in Human Visual Cortex.
J Neurosci. 2018 Jan 17;38(3):691-709. doi: 10.1523/JNEUROSCI.1724-17.2017. Epub 2017 Nov 30.
10
Effect of adapter duration on repetition suppression in inferior temporal cortex.
Sci Rep. 2017 Jun 9;7(1):3162. doi: 10.1038/s41598-017-03172-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验