Suppr超能文献

支持任务转换的具有时间和功能区分的大规模大脑网络动力学。

Temporally and functionally distinct large-scale brain network dynamics supporting task switching.

机构信息

Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, 3901 Beaubien St, Detroit, MI 48201, USA; Department of Neurosurgery, Juntendo University, Tokyo 113-8421, Japan.

Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, 3901 Beaubien St, Detroit, MI 48201, USA; Department of Neurosurgery, Yokohama City University, Yokohama 236-0004, Japan.

出版信息

Neuroimage. 2022 Jul 1;254:119126. doi: 10.1016/j.neuroimage.2022.119126. Epub 2022 Mar 22.

Abstract

OBJECTIVE

Our daily activities require frequent switches among competing responses at the millisecond time scale. We determined the spatiotemporal characteristics and functional significance of rapid, large-scale brain network dynamics during task switching.

METHODS

This cross-sectional study investigated patients with drug-resistant focal epilepsy who played a Lumosity cognitive flexibility training game during intracranial electroencephalography (iEEG) recording. According to a given task rule, unpredictably switching across trials, participants had to swipe the screen in the direction the stimulus was pointing or moving. Using this data, we described the spatiotemporal characteristics of iEEG high-gamma augmentation occurring more intensely during switch than repeat trials, unattributable to the effect of task rule (pointing or moving), within-stimulus congruence (the direction of stimulus pointing and moving was same or different in a given trial), or accuracy of an immediately preceding response. Diffusion-weighted imaging (DWI) tractography determined whether distant cortical regions showing enhanced activation during task switch trials were directly connected by white matter tracts. Trial-by-trial iEEG analysis deduced whether the intensity of task switch-related high-gamma augmentation was altered through practice and whether high-gamma amplitude predicted the accuracy of an upcoming response among switch trials.

RESULTS

The average number of completed trials during five-minute gameplay was 221.4 per patient (range: 171-285). Task switch trials increased the response times, whereas later trials reduced them. Analysis of iEEG signals sampled from 860 brain sites effectively elucidated the distinct spatiotemporal characteristics of task switch, task rule, and post-error-specific high-gamma modulations. Post-cue, task switch-related high-gamma augmentation was initiated in the right calcarine cortex after 260 ms, right precuneus after 330 ms, right entorhinal after 420 ms, and bilateral anterior middle-frontal gyri after 450 ms. DWI tractography successfully showed the presence of direct white matter tracts connecting the right visual areas to the precuneus and anterior middle-frontal regions but not between the right precuneus and anterior middle-frontal regions. Task-related high-gamma amplitudes in later trials were reduced in the calcarine, entorhinal and anterior middle-frontal regions, but increased in the precuneus. Functionally, enhanced post-cue precuneus high-gamma augmentation improved the accuracy of subsequent responses among switch trials.

CONCLUSIONS

Our multimodal analysis uncovered two temporally and functionally distinct network dynamics supporting task switching. High-gamma augmentation in the visual-precuneus pathway may reflect the neural process facilitating an attentional shift to a given updated task rule. High-gamma activity in the visual-dorsolateral prefrontal pathway, rapidly reduced through practice, may reflect the cost of executing appropriate stimulus-response translation.

摘要

目的

我们的日常活动需要在毫秒级的时间尺度上频繁地在竞争反应之间切换。我们确定了在任务切换过程中快速、大规模脑网络动力学的时空特征和功能意义。

方法

这项横断面研究调查了患有耐药性局灶性癫痫的患者,他们在颅内脑电图(iEEG)记录期间玩了 Lumosity 认知灵活性训练游戏。根据给定的任务规则,在试验中不可预测地切换,参与者必须根据刺激的指向或移动方向滑动屏幕。使用这些数据,我们描述了 iEEG 高伽马增强的时空特征,即在重复试验中比在重复试验中更强烈地发生,这归因于任务规则(指向或移动)、刺激内一致性(给定试验中刺激指向和移动的方向相同或不同)或前一个反应的准确性。扩散加权成像(DWI)示踪确定在任务切换试验中显示出增强激活的远距离皮质区域是否通过白质束直接连接。逐试 iEEG 分析推断通过练习是否改变了与任务切换相关的高伽马增强的强度,以及高伽马幅度是否预测了切换试验中后续反应的准确性。

结果

每位患者在五分钟游戏时间内完成的试验平均次数为 221.4 次(范围:171-285)。任务切换试验增加了反应时间,而后续试验则减少了反应时间。对从 860 个脑区采样的 iEEG 信号进行分析,有效地阐明了任务切换、任务规则和后错误特异性高伽马调制的独特时空特征。在提示后,与任务切换相关的高伽马增强在右侧距状皮层后 260 毫秒开始,在右侧后扣带回后 330 毫秒开始,在右侧内嗅皮层后 420 毫秒开始,在双侧额中前回后 450 毫秒开始。DWI 示踪成功显示了连接右侧视觉区域与后扣带回和额中前回的直接白质束的存在,但没有显示后扣带回和额中前回之间的直接白质束的存在。在以后的试验中,与任务相关的高伽马幅度在距状皮层、内嗅皮层和额中前回减少,但在后扣带回增加。功能上,提示后后扣带回高伽马增强改善了切换试验中后续反应的准确性。

结论

我们的多模态分析揭示了支持任务切换的两种在时间和功能上都不同的网络动力学。视觉-后扣带回通路中的高伽马增强可能反映了促进注意力转移到给定更新任务规则的神经过程。通过实践迅速减少的视觉-背外侧前额叶通路中的高伽马活动可能反映了执行适当的刺激-反应转换的代价。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b2e/9173207/6ed12344bece/nihms-1811920-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验