Huang Yue, Aguilar Rolando V, Trugman Stuart A, Cheong Sang-Wook, Long Yuan, Lee Min-Cheol, Zhu Jian-Xin, Rosa Priscila F S, Prasankumar Rohit P, Yarotski Dmitry A, Azad Abul, Sirica Nicholas S, Taylor Antoinette J
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA.
Nanophotonics. 2025 Feb 10;14(10):1607-1614. doi: 10.1515/nanoph-2024-0641. eCollection 2025 May.
Understanding and controlling the antiferromagnetic order in multiferroic materials on an ultrafast time scale is a long standing area of interest, due to their potential applications in spintronics and ultrafast magnetoelectric switching. We present an optical pump-terahertz (THz) probe study on multiferroic EuYMnO. The optical pump predominantly excites the d-d transitions of the Mn ions, and the temporal evolution of the pump-induced transient conductivity is measured with a subsequent THz pulse. Two distinct, temperature-dependent decay times are revealed. The shorter relaxation time corresponds to spin-lattice thermalization, while the longer one is ascribed to electron-hole recombination. A spin-selection rule in the relaxation process is proposed in the magnetic phase. Slight suppression of the electromagnons was observed after the optical pump pulse within the spin-lattice thermalization time scale. These observed fundamental magnetic processes can shed light on ultrafast control of magnetism and photoinduced phase transitions in multiferroics.
由于多铁性材料在自旋电子学和超快磁电开关方面的潜在应用,在超快时间尺度上理解和控制其反铁磁序一直是一个备受关注的领域。我们展示了一项关于多铁性材料EuYMnO₃的光泵浦 - 太赫兹(THz)探测研究。光泵浦主要激发Mn离子的d - d跃迁,并利用随后的太赫兹脉冲测量泵浦诱导的瞬态电导率的时间演化。揭示了两个不同的、与温度相关的衰减时间。较短的弛豫时间对应于自旋 - 晶格热化,而较长的弛豫时间归因于电子 - 空穴复合。在磁相中提出了弛豫过程中的自旋选择规则。在自旋 - 晶格热化时间尺度内,在光泵浦脉冲之后观察到了电磁子的轻微抑制。这些观察到的基本磁过程能够为多铁性材料中磁性的超快控制和光诱导相变提供启示。