Yale College, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520, USA.
Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06520, USA.
J Struct Biol. 2020 Sep 1;211(3):107553. doi: 10.1016/j.jsb.2020.107553. Epub 2020 Jun 23.
Many serine/threonine protein kinases discriminate between serine and threonine substrates as a filter to control signaling output. Among these, the p21-activated kinase (PAK) group strongly favors phosphorylation of Ser over Thr residues. PAK4, a group II PAK, almost exclusively phosphorylates its substrates on serine residues. The only well documented exception is LIM domain kinase 1 (LIMK1), which is phosphorylated on an activation loop threonine (Thr508) to promote its catalytic activity. To understand the molecular and kinetic basis for PAK4 substrate selectivity we compared its mode of recognition of LIMK1 (Thr508) with that of a known serine substrate, β-catenin (Ser675). We determined X-ray crystal structures of PAK4 in complex with synthetic peptides corresponding to its phosphorylation sites in LIMK1 and β-catenin to 1.9 Å and 2.2 Å resolution, respectively. We found that the PAK4 DFG + 1 residue, a key determinant of phosphoacceptor preference, adopts a sub-optimal orientation when bound to LIMK1 compared to β-catenin. In peptide kinase activity assays, we find that phosphoacceptor identity impacts catalytic efficiency but does not affect the K value for both phosphorylation sites. Although catalytic efficiency of wild-type LIMK1 and β-catenin are equivalent, T508S mutation of LIMK1 creates a highly efficient substrate. These results suggest suboptimal phosphorylation of LIMK1 as a mechanism for controlling the dynamics of substrate phosphorylation by PAK4.
许多丝氨酸/苏氨酸蛋白激酶通过区分丝氨酸和苏氨酸底物作为控制信号输出的筛选器。在这些激酶中,p21 激活激酶 (PAK) 组强烈偏爱磷酸化丝氨酸残基而不是苏氨酸残基。PAK4 是 II 组 PAK,几乎只在丝氨酸残基上磷酸化其底物。唯一有充分文献记录的例外是 LIM 结构域激酶 1(LIMK1),它在激活环的苏氨酸(Thr508)上磷酸化以促进其催化活性。为了了解 PAK4 底物选择性的分子和动力学基础,我们比较了它识别 LIMK1(Thr508)的模式与已知的丝氨酸底物 β-连环蛋白(Ser675)的模式。我们分别以 1.9Å 和 2.2Å 的分辨率确定了 PAK4 与 LIMK1 和 β-连环蛋白的磷酸化位点的合成肽复合物的 X 射线晶体结构。我们发现,与 β-连环蛋白相比,当与 LIMK1 结合时,PAK4 的 DFG + 1 残基,一个决定磷酸接受体偏好的关键决定因素,采用了一种亚最佳取向。在肽激酶活性测定中,我们发现磷酸接受体的身份影响催化效率,但不影响两个磷酸化位点的 K 值。尽管野生型 LIMK1 和 β-连环蛋白的催化效率相当,但 LIMK1 的 T508S 突变产生了一个高效的底物。这些结果表明,LIMK1 的亚最佳磷酸化是控制 PAK4 对底物磷酸化动力学的一种机制。