Suppr超能文献

p21 激活激酶 4 对生理磷酸化位点的识别。

Recognition of physiological phosphorylation sites by p21-activated kinase 4.

机构信息

Yale College, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520, USA.

Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06520, USA.

出版信息

J Struct Biol. 2020 Sep 1;211(3):107553. doi: 10.1016/j.jsb.2020.107553. Epub 2020 Jun 23.

Abstract

Many serine/threonine protein kinases discriminate between serine and threonine substrates as a filter to control signaling output. Among these, the p21-activated kinase (PAK) group strongly favors phosphorylation of Ser over Thr residues. PAK4, a group II PAK, almost exclusively phosphorylates its substrates on serine residues. The only well documented exception is LIM domain kinase 1 (LIMK1), which is phosphorylated on an activation loop threonine (Thr508) to promote its catalytic activity. To understand the molecular and kinetic basis for PAK4 substrate selectivity we compared its mode of recognition of LIMK1 (Thr508) with that of a known serine substrate, β-catenin (Ser675). We determined X-ray crystal structures of PAK4 in complex with synthetic peptides corresponding to its phosphorylation sites in LIMK1 and β-catenin to 1.9 Å and 2.2 Å resolution, respectively. We found that the PAK4 DFG + 1 residue, a key determinant of phosphoacceptor preference, adopts a sub-optimal orientation when bound to LIMK1 compared to β-catenin. In peptide kinase activity assays, we find that phosphoacceptor identity impacts catalytic efficiency but does not affect the K value for both phosphorylation sites. Although catalytic efficiency of wild-type LIMK1 and β-catenin are equivalent, T508S mutation of LIMK1 creates a highly efficient substrate. These results suggest suboptimal phosphorylation of LIMK1 as a mechanism for controlling the dynamics of substrate phosphorylation by PAK4.

摘要

许多丝氨酸/苏氨酸蛋白激酶通过区分丝氨酸和苏氨酸底物作为控制信号输出的筛选器。在这些激酶中,p21 激活激酶 (PAK) 组强烈偏爱磷酸化丝氨酸残基而不是苏氨酸残基。PAK4 是 II 组 PAK,几乎只在丝氨酸残基上磷酸化其底物。唯一有充分文献记录的例外是 LIM 结构域激酶 1(LIMK1),它在激活环的苏氨酸(Thr508)上磷酸化以促进其催化活性。为了了解 PAK4 底物选择性的分子和动力学基础,我们比较了它识别 LIMK1(Thr508)的模式与已知的丝氨酸底物 β-连环蛋白(Ser675)的模式。我们分别以 1.9Å 和 2.2Å 的分辨率确定了 PAK4 与 LIMK1 和 β-连环蛋白的磷酸化位点的合成肽复合物的 X 射线晶体结构。我们发现,与 β-连环蛋白相比,当与 LIMK1 结合时,PAK4 的 DFG + 1 残基,一个决定磷酸接受体偏好的关键决定因素,采用了一种亚最佳取向。在肽激酶活性测定中,我们发现磷酸接受体的身份影响催化效率,但不影响两个磷酸化位点的 K 值。尽管野生型 LIMK1 和 β-连环蛋白的催化效率相当,但 LIMK1 的 T508S 突变产生了一个高效的底物。这些结果表明,LIMK1 的亚最佳磷酸化是控制 PAK4 对底物磷酸化动力学的一种机制。

相似文献

1
Recognition of physiological phosphorylation sites by p21-activated kinase 4.
J Struct Biol. 2020 Sep 1;211(3):107553. doi: 10.1016/j.jsb.2020.107553. Epub 2020 Jun 23.
2
Identification of a major determinant for serine-threonine kinase phosphoacceptor specificity.
Mol Cell. 2014 Jan 9;53(1):140-7. doi: 10.1016/j.molcel.2013.11.013. Epub 2013 Dec 26.
4
Identification of as a Susceptibility Gene for Familial Non-Medullary Thyroid Carcinoma.
Thyroid. 2024 May;34(5):583-597. doi: 10.1089/thy.2023.0564. Epub 2024 Mar 25.
7
Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma.
Cochrane Database Syst Rev. 2022 Mar 2;3(3):CD013387. doi: 10.1002/14651858.CD013387.pub2.
8
Dual-action kinase inhibitors influence p38α MAP kinase dephosphorylation.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2415150122. doi: 10.1073/pnas.2415150122. Epub 2024 Dec 31.

引用本文的文献

1
Regulation and signaling of the LIM domain kinases.
Bioessays. 2025 Jan;47(1):e2400184. doi: 10.1002/bies.202400184. Epub 2024 Oct 3.
2
Rho family GTPase signaling through type II p21-activated kinases.
Cell Mol Life Sci. 2022 Nov 19;79(12):598. doi: 10.1007/s00018-022-04618-2.
3
Molecular basis for integrin adhesion receptor binding to p21-activated kinase 4 (PAK4).
Commun Biol. 2022 Nov 17;5(1):1257. doi: 10.1038/s42003-022-04157-3.
4
Structural Aspects of LIMK Regulation and Pharmacology.
Cells. 2022 Jan 2;11(1):142. doi: 10.3390/cells11010142.
5
The Role of p21-Activated Kinases in Cancer and Beyond: Where Are We Heading?
Front Cell Dev Biol. 2021 Mar 16;9:641381. doi: 10.3389/fcell.2021.641381. eCollection 2021.

本文引用的文献

1
Comprehensive profiling of the STE20 kinase family defines features essential for selective substrate targeting and signaling output.
PLoS Biol. 2019 Mar 21;17(3):e2006540. doi: 10.1371/journal.pbio.2006540. eCollection 2019 Mar.
2
Homing in: Mechanisms of Substrate Targeting by Protein Kinases.
Trends Biochem Sci. 2018 May;43(5):380-394. doi: 10.1016/j.tibs.2018.02.009. Epub 2018 Mar 12.
3
PAK4 pathway as a potential therapeutic target in pancreatic cancer.
Future Oncol. 2018 Mar;14(7):579-582. doi: 10.2217/fon-2017-0458. Epub 2018 Mar 6.
4
CDC42 binds PAK4 via an extended GTPase-effector interface.
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):531-536. doi: 10.1073/pnas.1717437115. Epub 2018 Jan 2.
5
Identification of the PAK4 interactome reveals PAK4 phosphorylation of N-WASP and promotion of Arp2/3-dependent actin polymerization.
Oncotarget. 2017 Aug 18;8(44):77061-77074. doi: 10.18632/oncotarget.20352. eCollection 2017 Sep 29.
6
PAK4 crystal structures suggest unusual kinase conformational movements.
Biochim Biophys Acta Proteins Proteom. 2018 Feb;1866(2):356-365. doi: 10.1016/j.bbapap.2017.10.004. Epub 2017 Oct 7.
7
PAK signalling drives acquired drug resistance to MAPK inhibitors in BRAF-mutant melanomas.
Nature. 2017 Oct 5;550(7674):133-136. doi: 10.1038/nature24040. Epub 2017 Sep 27.
8
Structure, biochemistry, and biology of PAK kinases.
Gene. 2017 Mar 20;605:20-31. doi: 10.1016/j.gene.2016.12.014. Epub 2016 Dec 19.
9
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
10
PAK4 Phosphorylates p53 at Serine 215 to Promote Liver Cancer Metastasis.
Cancer Res. 2016 Oct 1;76(19):5732-5742. doi: 10.1158/0008-5472.CAN-15-3373. Epub 2016 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验