Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France.
Aix-Marseille University, INSERM, INRA, C2VN, 13385 Marseille, France.
Cells. 2020 Jun 23;9(6):1531. doi: 10.3390/cells9061531.
Induced pluripotent stem cells (iPSCs) obtained by reprogramming primary somatic cells have revolutionized the fields of cell biology and disease modeling. However, the number protocols for generating mature muscle fibers with sarcolemmal organization using iPSCs remain limited, and partly mimic the complexity of mature skeletal muscle. We used a novel combination of small molecules added in a precise sequence for the simultaneous codifferentiation of human iPSCs into skeletal muscle cells and motor neurons. We show that the presence of both cell types reduces the production time for millimeter-long multinucleated muscle fibers with sarcolemmal organization. Muscle fiber contractions are visible in 19-21 days, and can be maintained over long period thanks to the production of innervated multinucleated mature skeletal muscle fibers with autonomous cell regeneration of PAX7-positive cells and extracellular matrix synthesis. The sequential addition of specific molecules recapitulates key steps of human peripheral neurogenesis and myogenesis. Furthermore, this organoid-like culture can be used for functional evaluation and drug screening. Our protocol, which is applicable to hiPSCs from healthy individuals, was validated in Duchenne Muscular Dystrophy, Myotonic Dystrophy, Facio-Scapulo-Humeral Dystrophy and type 2A Limb-Girdle Muscular Dystrophy, opening new paths for the exploration of muscle differentiation, disease modeling and drug discovery.
诱导多能干细胞(iPSCs)通过重编程原代体细胞而获得,这一技术革新了细胞生物学和疾病建模领域。然而,使用 iPSCs 生成具有肌膜组织的成熟肌肉纤维的方案仍然有限,并且在一定程度上模拟了成熟骨骼肌的复杂性。我们使用了一种新颖的小分子组合,这些小分子按特定顺序添加,用于同时将人 iPSCs 向成肌细胞和运动神经元进行共分化。我们发现,这两种细胞类型的存在减少了产生具有肌膜组织的毫米长多核肌肉纤维的生产时间。在 19-21 天内可以观察到肌肉纤维收缩,并且由于产生了具有自主细胞再生能力的 PAX7 阳性细胞和细胞外基质合成的神经支配的多核成熟骨骼肌纤维,这种纤维可以长期维持。特定分子的顺序添加再现了人类周围神经发生和肌发生的关键步骤。此外,这种类器官样培养物可用于功能评估和药物筛选。我们的方案适用于来自健康个体的 hiPSCs,并在杜氏肌营养不良症、强直性肌营养不良症、面肩肱型肌营养不良症和 2A 型肢带型肌营养不良症中得到了验证,为肌肉分化、疾病建模和药物发现的探索开辟了新的途径。