文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

工程化骨骼肌再现了人类肌肉的发育、再生和萎缩。

Engineered skeletal muscle recapitulates human muscle development, regeneration and dystrophy.

机构信息

Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University, Göttingen, Germany.

DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.

出版信息

J Cachexia Sarcopenia Muscle. 2022 Dec;13(6):3106-3121. doi: 10.1002/jcsm.13094. Epub 2022 Oct 18.


DOI:10.1002/jcsm.13094
PMID:36254806
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9745484/
Abstract

BACKGROUND: Human pluripotent stem cell-derived muscle models show great potential for translational research. Here, we describe developmentally inspired methods for the derivation of skeletal muscle cells and their utility in skeletal muscle tissue engineering with the aim to model skeletal muscle regeneration and dystrophy in vitro. METHODS: Key steps include the directed differentiation of human pluripotent stem cells to embryonic muscle progenitors followed by primary and secondary foetal myogenesis into three-dimensional muscle. To simulate Duchenne muscular dystrophy (DMD), a patient-specific induced pluripotent stem cell line was compared to a CRISPR/Cas9-edited isogenic control line. RESULTS: The established skeletal muscle differentiation protocol robustly and faithfully recapitulates critical steps of embryonic myogenesis in two-dimensional and three-dimensional cultures, resulting in functional human skeletal muscle organoids (SMOs) and engineered skeletal muscles (ESMs) with a regeneration-competent satellite-like cell pool. Tissue-engineered muscle exhibits organotypic maturation and function (up to 5.7 ± 0.5 mN tetanic twitch tension at 100 Hz in ESM). Contractile performance could be further enhanced by timed thyroid hormone treatment, increasing the speed of contraction (time to peak contraction) as well as relaxation (time to 50% relaxation) of single twitches from 107 ± 2 to 75 ± 4 ms (P < 0.05) and from 146 ± 6 to 100 ± 6 ms (P < 0.05), respectively. Satellite-like cells could be documented as largely quiescent PAX7 cells (75 ± 6% Ki67 ) located adjacent to muscle fibres confined under a laminin-containing basal membrane. Activation of the engineered satellite-like cell niche was documented in a cardiotoxin injury model with marked recovery of contractility to 57 ± 8% of the pre-injury force 21 days post-injury (P < 0.05 compared to Day 2 post-injury), which was completely blocked by preceding irradiation. Absence of dystrophin in DMD ESM caused a marked reduction of contractile force (-35 ± 7%, P < 0.05) and impaired expression of fast myosin isoforms resulting in prolonged contraction (175 ± 14 ms, P < 0.05 vs. gene-edited control) and relaxation (238 ± 22 ms, P < 0.05 vs. gene-edited control) times. Restoration of dystrophin levels by gene editing rescued the DMD phenotype in ESM. CONCLUSIONS: We introduce human muscle models with canonical properties of bona fide skeletal muscle in vivo to study muscle development, maturation, disease and repair.

摘要

背景:人类多能干细胞衍生的肌肉模型在转化研究中显示出巨大的潜力。在这里,我们描述了受发育启发的方法,用于衍生骨骼肌细胞,并将其用于骨骼肌组织工程,旨在体外模拟骨骼肌再生和营养不良。

方法:关键步骤包括将人多能干细胞定向分化为胚胎肌肉祖细胞,然后进行原代和次代胎儿肌发生,形成三维肌肉。为了模拟杜氏肌营养不良症(DMD),我们比较了一个患者特异性诱导多能干细胞系和一个 CRISPR/Cas9 编辑的同基因对照系。

结果:建立的骨骼肌分化方案在二维和三维培养中可靠且忠实地再现了胚胎肌发生的关键步骤,从而产生了功能性的人类骨骼肌类器官(SMO)和工程化的骨骼肌(ESM),具有再生能力的卫星样细胞池。组织工程化的肌肉表现出器官样成熟和功能(在 ESM 中,100Hz 时的最大单收缩张力可达 5.7±0.5mN)。通过定时甲状腺激素处理可以进一步增强收缩性能,缩短单个收缩的收缩(达到收缩峰值的时间)和松弛(达到 50%松弛的时间),从 107±2 到 75±4ms(P<0.05)和从 146±6 到 100±6ms(P<0.05)。可以记录到卫星样细胞主要为静止的 PAX7 细胞(Ki67 为 75±6%),位于受层粘连蛋白包含的基底膜限制的肌纤维旁边。在心脏毒素损伤模型中,工程化的卫星样细胞龛被激活,在损伤后 21 天,收缩力恢复到损伤前的 57±8%(与损伤后第 2 天相比,P<0.05),而在前照射后完全被阻断。DMD ESM 中缺乏肌营养不良蛋白导致收缩力显著降低(-35±7%,P<0.05),并影响快肌肌球蛋白同工型的表达,导致收缩(175±14ms,P<0.05 与基因编辑对照相比)和松弛(238±22ms,P<0.05 与基因编辑对照相比)时间延长。通过基因编辑恢复肌营养不良蛋白水平可挽救 ESM 中的 DMD 表型。

结论:我们引入了具有体内真实骨骼肌典型特性的人类肌肉模型,以研究肌肉发育、成熟、疾病和修复。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d19/9745484/90152d3bf9dc/JCSM-13-3106-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d19/9745484/db6810d7e329/JCSM-13-3106-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d19/9745484/fda7cf870b21/JCSM-13-3106-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d19/9745484/0459b7bcfc4b/JCSM-13-3106-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d19/9745484/835d6027837f/JCSM-13-3106-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d19/9745484/046e424bf9fb/JCSM-13-3106-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d19/9745484/5e1cca751d03/JCSM-13-3106-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d19/9745484/5b24a74a5f2e/JCSM-13-3106-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d19/9745484/90152d3bf9dc/JCSM-13-3106-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d19/9745484/db6810d7e329/JCSM-13-3106-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d19/9745484/fda7cf870b21/JCSM-13-3106-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d19/9745484/0459b7bcfc4b/JCSM-13-3106-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d19/9745484/835d6027837f/JCSM-13-3106-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d19/9745484/046e424bf9fb/JCSM-13-3106-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d19/9745484/5e1cca751d03/JCSM-13-3106-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d19/9745484/5b24a74a5f2e/JCSM-13-3106-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d19/9745484/90152d3bf9dc/JCSM-13-3106-g008.jpg

相似文献

[1]
Engineered skeletal muscle recapitulates human muscle development, regeneration and dystrophy.

J Cachexia Sarcopenia Muscle. 2022-12

[2]
Myogenesis modelled by human pluripotent stem cells: a multi-omic study of Duchenne myopathy early onset.

J Cachexia Sarcopenia Muscle. 2021-2

[3]
Human skeletal muscle organoids model fetal myogenesis and sustain uncommitted PAX7 myogenic progenitors.

Elife. 2023-11-14

[4]
Isometric resistance training increases strength and alters histopathology of dystrophin-deficient mouse skeletal muscle.

J Appl Physiol (1985). 2018-12-20

[5]
microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice.

J Clin Invest. 2012-5-1

[6]
Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.

Exp Physiol. 2014-4

[7]
Prednisolone rescues Duchenne muscular dystrophy phenotypes in human pluripotent stem cell-derived skeletal muscle in vitro.

Proc Natl Acad Sci U S A. 2021-7-13

[8]
A muscle fatigue-like contractile decline was recapitulated using skeletal myotubes from Duchenne muscular dystrophy patient-derived iPSCs.

Cell Rep Med. 2021-6-15

[9]
De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle.

Acta Biomater. 2021-9-15

[10]
ERBB3 and NGFR mark a distinct skeletal muscle progenitor cell in human development and hPSCs.

Nat Cell Biol. 2017-12-18

引用本文的文献

[1]
Human Pluripotent Stem Cell-Derived Skeletal Muscle Organoid Model of Aging-Induced Sarcopenia.

J Cachexia Sarcopenia Muscle. 2025-8

[2]
Engineering of tissue in microphysiological systems demonstrated by modelling skeletal muscle.

Regen Biomater. 2025-6-16

[3]
A Self-Renewing Biomimetic Skeletal Muscle Construct Engineered using Induced Myogenic Progenitor Cells.

Adv Funct Mater. 2023-9-27

[4]
Duchenne Muscular Dystrophy Patient iPSCs-Derived Skeletal Muscle Organoids Exhibit a Developmental Delay in Myogenic Progenitor Maturation.

Cells. 2025-7-7

[5]
Skeletal muscle, neuromuscular organoids and assembloids: a scoping review.

EBioMedicine. 2025-6-26

[6]
Microdroplet-Engineered Skeletal Muscle Organoids from Primary Tissue Recapitulate Parental Physiology with High Reproducibility.

Research (Wash D C). 2025-5-15

[7]
Tissue-Specific Expression of the Porcine Gene and Its Impact on the Proliferation and Differentiation of Myogenic Cells.

Animals (Basel). 2025-4-10

[8]
Longevity mechanisms in cardiac aging: exploring calcium dysregulation and senescence.

Biogerontology. 2025-4-21

[9]
Human Myobundle Platform for Studying the Role of Notch Signaling in Satellite Cell Phenotype and Function.

Adv Healthc Mater. 2025-5

[10]
From in vivo models to in vitro bioengineered neuromuscular junctions for the study of Charcot-Marie-Tooth disease.

J Tissue Eng. 2025-3-12

本文引用的文献

[1]
Ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle: update 2021.

J Cachexia Sarcopenia Muscle. 2021-12

[2]
Muscle repair after physiological damage relies on nuclear migration for cellular reconstruction.

Science. 2021-10-15

[3]
Prednisolone rescues Duchenne muscular dystrophy phenotypes in human pluripotent stem cell-derived skeletal muscle in vitro.

Proc Natl Acad Sci U S A. 2021-7-13

[4]
A muscle fatigue-like contractile decline was recapitulated using skeletal myotubes from Duchenne muscular dystrophy patient-derived iPSCs.

Cell Rep Med. 2021-6-15

[5]
Myogenesis modelled by human pluripotent stem cells: a multi-omic study of Duchenne myopathy early onset.

J Cachexia Sarcopenia Muscle. 2021-2

[6]
Non-coding deletions identify Maenli lncRNA as a limb-specific En1 regulator.

Nature. 2021-4

[7]
Purification and preservation of satellite cells from human skeletal muscle.

STAR Protoc. 2021-3-19

[8]
Bioengineered human skeletal muscle capable of functional regeneration.

BMC Biol. 2020-10-20

[9]
Self-Organizing 3D Human Trunk Neuromuscular Organoids.

Cell Stem Cell. 2020-9-3

[10]
Distinct Phases of Postnatal Skeletal Muscle Growth Govern the Progressive Establishment of Muscle Stem Cell Quiescence.

Stem Cell Reports. 2020-9-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索