Suppr超能文献

人工智能对圣保罗市医学生选择放射科作为专业的影响。

Impact of artificial intelligence on the choice of radiology as a specialty by medical students from the city of São Paulo.

作者信息

Brandes Gabriela Irene Garcia, D'Ippolito Giuseppe, Azzolini Anderson Gusatti, Meirelles Gustavo

机构信息

Escola Paulista de Medicina da Universidade Federal de São Paulo (EPM-Unifesp), São Paulo, SP, Brazil.

Grupo Fleury, São Paulo, SP, Brazil.

出版信息

Radiol Bras. 2020 May-Jun;53(3):167-170. doi: 10.1590/0100-3984.2019.0101.

Abstract

OBJECTIVE

To evaluate the impact of artificial intelligence (AI) on undergraduate medical students' choice of radiology as a specialty.

MATERIALS AND METHODS

In February 2019, an anonymous online survey was sent to medical students. The research contemplated questions on how much students think they know about AI technologies, how much AI discourages them from choosing radiology as a specialty, and whether they believe there is a threat to the radiology job market.

RESULTS

A total of 101 students, most of them doing their internship, answered the questionnaire. More than half of them (52.5%) said they believe AI poses a threat to the radiology job market, but 64.3% claimed not to have proper knowledge about these new technologies, and 31.7% said they would like more information on the technologies' operation and progress before making a decision on whether or not to practice radiology as a specialty.

CONCLUSION

A significant proportion of the surveyed students perceive AI as a threat to the radiological practice, which impacts their career choice. However, the majority claims to have insufficient knowledge of it and believes more information is needed for decision-making.

摘要

目的

评估人工智能(AI)对本科医学生选择放射科作为专业的影响。

材料与方法

2019年2月,向医学生发送了一份匿名在线调查问卷。该研究考虑了关于学生认为自己对人工智能技术了解多少、人工智能在多大程度上阻碍他们选择放射科作为专业以及他们是否认为放射科就业市场存在威胁等问题。

结果

共有101名学生回答了问卷,其中大多数人正在实习。超过一半(52.5%)的人表示他们认为人工智能对放射科就业市场构成威胁,但64.3%的人声称对这些新技术没有足够的了解,31.7%的人表示在决定是否将放射科作为专业之前,他们希望获得更多关于技术操作和进展的信息。

结论

相当一部分接受调查的学生认为人工智能对放射科实践构成威胁,这影响了他们的职业选择。然而,大多数人声称对其了解不足,并认为需要更多信息来做出决策。

相似文献

7
Medical Student Perspectives on the Impact of Artificial Intelligence on the Practice of Medicine.医学生对人工智能对医学实践影响的看法。
Curr Probl Diagn Radiol. 2021 Sep-Oct;50(5):614-619. doi: 10.1067/j.cpradiol.2020.06.011. Epub 2020 Jun 27.

引用本文的文献

本文引用的文献

2
Artificial intelligence to diagnose meniscus tears on MRI.人工智能诊断 MRI 半月板撕裂
Diagn Interv Imaging. 2019 Apr;100(4):243-249. doi: 10.1016/j.diii.2019.02.007. Epub 2019 Mar 28.
3
The RSNA Pediatric Bone Age Machine Learning Challenge.RSNA 儿科骨龄机器学习挑战赛。
Radiology. 2019 Feb;290(2):498-503. doi: 10.1148/radiol.2018180736. Epub 2018 Nov 27.
7
Deep Learning in Radiology.深度学习在放射学中的应用
Acad Radiol. 2018 Nov;25(11):1472-1480. doi: 10.1016/j.acra.2018.02.018. Epub 2018 Mar 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验