Suppr超能文献

人工智能对圣保罗市医学生选择放射科作为专业的影响。

Impact of artificial intelligence on the choice of radiology as a specialty by medical students from the city of São Paulo.

作者信息

Brandes Gabriela Irene Garcia, D'Ippolito Giuseppe, Azzolini Anderson Gusatti, Meirelles Gustavo

机构信息

Escola Paulista de Medicina da Universidade Federal de São Paulo (EPM-Unifesp), São Paulo, SP, Brazil.

Grupo Fleury, São Paulo, SP, Brazil.

出版信息

Radiol Bras. 2020 May-Jun;53(3):167-170. doi: 10.1590/0100-3984.2019.0101.

Abstract

OBJECTIVE

To evaluate the impact of artificial intelligence (AI) on undergraduate medical students' choice of radiology as a specialty.

MATERIALS AND METHODS

In February 2019, an anonymous online survey was sent to medical students. The research contemplated questions on how much students think they know about AI technologies, how much AI discourages them from choosing radiology as a specialty, and whether they believe there is a threat to the radiology job market.

RESULTS

A total of 101 students, most of them doing their internship, answered the questionnaire. More than half of them (52.5%) said they believe AI poses a threat to the radiology job market, but 64.3% claimed not to have proper knowledge about these new technologies, and 31.7% said they would like more information on the technologies' operation and progress before making a decision on whether or not to practice radiology as a specialty.

CONCLUSION

A significant proportion of the surveyed students perceive AI as a threat to the radiological practice, which impacts their career choice. However, the majority claims to have insufficient knowledge of it and believes more information is needed for decision-making.

摘要

目的

评估人工智能(AI)对本科医学生选择放射科作为专业的影响。

材料与方法

2019年2月,向医学生发送了一份匿名在线调查问卷。该研究考虑了关于学生认为自己对人工智能技术了解多少、人工智能在多大程度上阻碍他们选择放射科作为专业以及他们是否认为放射科就业市场存在威胁等问题。

结果

共有101名学生回答了问卷,其中大多数人正在实习。超过一半(52.5%)的人表示他们认为人工智能对放射科就业市场构成威胁,但64.3%的人声称对这些新技术没有足够的了解,31.7%的人表示在决定是否将放射科作为专业之前,他们希望获得更多关于技术操作和进展的信息。

结论

相当一部分接受调查的学生认为人工智能对放射科实践构成威胁,这影响了他们的职业选择。然而,大多数人声称对其了解不足,并认为需要更多信息来做出决策。

相似文献

2
Influence of Artificial Intelligence on Canadian Medical Students' Preference for Radiology Specialty: ANational Survey Study.
Acad Radiol. 2019 Apr;26(4):566-577. doi: 10.1016/j.acra.2018.10.007. Epub 2018 Nov 11.
4
Impact of the Rise of Artificial Intelligence in Radiology: What Do Students Think?
Int J Environ Res Public Health. 2023 Jan 16;20(2):1589. doi: 10.3390/ijerph20021589.
5
Artificial intelligence in radiology: does it impact medical students preference for radiology as their future career?
BJR Open. 2020 Dec 11;2(1):20200037. doi: 10.1259/bjro.20200037. eCollection 2020.
6
Impact of artificial intelligence on US medical students' choice of radiology.
Clin Imaging. 2022 Jan;81:67-71. doi: 10.1016/j.clinimag.2021.09.018. Epub 2021 Oct 2.
7
Medical Student Perspectives on the Impact of Artificial Intelligence on the Practice of Medicine.
Curr Probl Diagn Radiol. 2021 Sep-Oct;50(5):614-619. doi: 10.1067/j.cpradiol.2020.06.011. Epub 2020 Jun 27.
10
Medical students' attitude towards artificial intelligence: a multicentre survey.
Eur Radiol. 2019 Apr;29(4):1640-1646. doi: 10.1007/s00330-018-5601-1. Epub 2018 Jul 6.

引用本文的文献

1
Artificial intelligence in dentistry: awareness among dentists and computer scientists.
Oral Radiol. 2025 May 16. doi: 10.1007/s11282-025-00828-z.
5
Healthcare students' knowledge, attitudes, and perspectives toward artificial intelligence in the southern Vietnam.
Heliyon. 2023 Nov 22;9(12):e22653. doi: 10.1016/j.heliyon.2023.e22653. eCollection 2023 Dec.
7
Attitudes, knowledge, and skills towards artificial intelligence among healthcare students: A systematic review.
Health Sci Rep. 2023 Mar 12;6(3):e1138. doi: 10.1002/hsr2.1138. eCollection 2023 Mar.
8
Impact of the Rise of Artificial Intelligence in Radiology: What Do Students Think?
Int J Environ Res Public Health. 2023 Jan 16;20(2):1589. doi: 10.3390/ijerph20021589.
9
Acceptance of clinical artificial intelligence among physicians and medical students: A systematic review with cross-sectional survey.
Front Med (Lausanne). 2022 Aug 31;9:990604. doi: 10.3389/fmed.2022.990604. eCollection 2022.

本文引用的文献

1
Fostering a Healthy AI Ecosystem for Radiology: Conclusions of the 2018 RSNA Summit on AI in Radiology.
Radiol Artif Intell. 2019 Mar 27;1(2):190021. doi: 10.1148/ryai.2019190021. eCollection 2019 Mar.
2
Artificial intelligence to diagnose meniscus tears on MRI.
Diagn Interv Imaging. 2019 Apr;100(4):243-249. doi: 10.1016/j.diii.2019.02.007. Epub 2019 Mar 28.
3
The RSNA Pediatric Bone Age Machine Learning Challenge.
Radiology. 2019 Feb;290(2):498-503. doi: 10.1148/radiol.2018180736. Epub 2018 Nov 27.
4
Influence of Artificial Intelligence on Canadian Medical Students' Preference for Radiology Specialty: ANational Survey Study.
Acad Radiol. 2019 Apr;26(4):566-577. doi: 10.1016/j.acra.2018.10.007. Epub 2018 Nov 11.
5
Medical students' attitude towards artificial intelligence: a multicentre survey.
Eur Radiol. 2019 Apr;29(4):1640-1646. doi: 10.1007/s00330-018-5601-1. Epub 2018 Jul 6.
6
Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology.
Can Assoc Radiol J. 2018 May;69(2):120-135. doi: 10.1016/j.carj.2018.02.002. Epub 2018 Apr 11.
7
Deep Learning in Radiology.
Acad Radiol. 2018 Nov;25(11):1472-1480. doi: 10.1016/j.acra.2018.02.018. Epub 2018 Mar 30.
8
Medical Specialty Choice and Related Factors of Brazilian Medical Students and Recent Doctors.
PLoS One. 2015 Jul 24;10(7):e0133585. doi: 10.1371/journal.pone.0133585. eCollection 2015.
9
The relationship between specialty choice and gender of U.S. medical students, 1990-2003.
Acad Med. 2005 Sep;80(9):797-802. doi: 10.1097/00001888-200509000-00003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验