Suppr超能文献

浓度依赖的共振测量探究亨廷顿外显子 1 蛋白快速四聚化的动力学。

Kinetics of Fast Tetramerization of the Huntingtin Exon 1 Protein Probed by Concentration-Dependent On-Resonance Measurements.

机构信息

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-520, United States.

出版信息

J Phys Chem Lett. 2020 Jul 16;11(14):5643-5648. doi: 10.1021/acs.jpclett.0c01636. Epub 2020 Jul 1.

Abstract

An approach for the quantitative description of the kinetics of very fast exchange processes (τ < 50-100 μs) associated with transient, reversible protein oligomerization, is presented. We show that on-resonance N- measurements conducted as a function of protein concentration at several spin-lock radio frequency field strengths are indispensable for unambiguous determination of the rate constants for interconversion between monomeric and higher order oligomeric species. The approach is experimentally demonstrated on the study of fast, reversible tetramerization of the full-length Huntingtin exon 1 protein, htt, responsible for Huntington's disease. Incorporation of concentration-dependent N- data, obtained from on-resonance measurements performed at three spin-lock field strengths, into analysis of the kinetic scheme describing reversible tetramerization of htt allowed us to uniquely determine the rate constants of interconversion between the various species. This approach serves as a valuable complement to the existing array of NMR techniques for studying early, transient oligomerization events in protein aggregation pathways.

摘要

本文提出了一种用于定量描述与瞬态、可逆蛋白质寡聚化相关的非常快速交换过程(τ < 50-100 μs)的动力学的方法。我们表明,在几个自旋锁定射频场强度下作为蛋白质浓度函数进行的共振 N-测量对于明确确定单体和更高阶寡聚体之间的转化速率常数是必不可少的。该方法在研究全长 Huntingtin 外显子 1 蛋白 htt(导致亨廷顿病)的快速、可逆四聚化的研究中得到了实验验证。将在三个自旋锁定场强度下进行的共振测量获得的浓度依赖性 N-数据纳入描述 htt 可逆四聚化的动力学方案的分析中,使我们能够唯一地确定各种物种之间的转化速率常数。该方法为研究蛋白质聚集途径中早期瞬态寡聚化事件的现有一系列 NMR 技术提供了有价值的补充。

相似文献

1
Kinetics of Fast Tetramerization of the Huntingtin Exon 1 Protein Probed by Concentration-Dependent On-Resonance Measurements.
J Phys Chem Lett. 2020 Jul 16;11(14):5643-5648. doi: 10.1021/acs.jpclett.0c01636. Epub 2020 Jul 1.
2
Abrogation of prenucleation, transient oligomerization of the Huntingtin exon 1 protein by human profilin I.
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):5844-5852. doi: 10.1073/pnas.1922264117. Epub 2020 Mar 3.
3
Quantitative NMR analysis of the kinetics of prenucleation oligomerization and aggregation of pathogenic huntingtin exon-1 protein.
Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2207690119. doi: 10.1073/pnas.2207690119. Epub 2022 Jul 12.
4
Effects of Macromolecular Cosolutes on the Kinetics of Huntingtin Aggregation Monitored by NMR Spectroscopy.
J Phys Chem Lett. 2024 Jun 20;15(24):6375-6382. doi: 10.1021/acs.jpclett.4c01410. Epub 2024 Jun 10.
6
Probing initial transient oligomerization events facilitating Huntingtin fibril nucleation at atomic resolution by relaxation-based NMR.
Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3562-3571. doi: 10.1073/pnas.1821216116. Epub 2019 Feb 11.
7
Nucleation of Huntingtin Aggregation Proceeds via Conformational Conversion of Pre-Formed, Sparsely-Populated Tetramers.
Adv Sci (Weinh). 2024 Jun;11(24):e2309217. doi: 10.1002/advs.202309217. Epub 2024 Mar 12.
9
Probing the Interaction of Huntingtin Exon-1 Polypeptides with the Chaperonin Nanomachine GroEL.
Chembiochem. 2021 Jun 2;22(11):1985-1991. doi: 10.1002/cbic.202100055. Epub 2021 Apr 7.
10
Structure and Dynamics of the Huntingtin Exon-1 N-Terminus: A Solution NMR Perspective.
J Am Chem Soc. 2017 Jan 25;139(3):1168-1176. doi: 10.1021/jacs.6b10893. Epub 2017 Jan 13.

引用本文的文献

1
Modeling Protein Aggregation Kinetics from NMR Data.
J Mol Biol. 2025 Jun 9:169269. doi: 10.1016/j.jmb.2025.169269.
2
Effects of Macromolecular Cosolutes on the Kinetics of Huntingtin Aggregation Monitored by NMR Spectroscopy.
J Phys Chem Lett. 2024 Jun 20;15(24):6375-6382. doi: 10.1021/acs.jpclett.4c01410. Epub 2024 Jun 10.
3
Nucleation of Huntingtin Aggregation Proceeds via Conformational Conversion of Pre-Formed, Sparsely-Populated Tetramers.
Adv Sci (Weinh). 2024 Jun;11(24):e2309217. doi: 10.1002/advs.202309217. Epub 2024 Mar 12.
4
Role of conformational dynamics in pathogenic protein aggregation.
Curr Opin Chem Biol. 2023 Apr;73:102280. doi: 10.1016/j.cbpa.2023.102280. Epub 2023 Mar 4.
5
Quantitative NMR analysis of the kinetics of prenucleation oligomerization and aggregation of pathogenic huntingtin exon-1 protein.
Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2207690119. doi: 10.1073/pnas.2207690119. Epub 2022 Jul 12.
7
NMR methods for exploring 'dark' states in ligand binding and protein-protein interactions.
Prog Nucl Magn Reson Spectrosc. 2022 Feb;128:1-24. doi: 10.1016/j.pnmrs.2021.10.001. Epub 2021 Nov 2.
10
Probing the Interaction of Huntingtin Exon-1 Polypeptides with the Chaperonin Nanomachine GroEL.
Chembiochem. 2021 Jun 2;22(11):1985-1991. doi: 10.1002/cbic.202100055. Epub 2021 Apr 7.

本文引用的文献

1
Abrogation of prenucleation, transient oligomerization of the Huntingtin exon 1 protein by human profilin I.
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):5844-5852. doi: 10.1073/pnas.1922264117. Epub 2020 Mar 3.
2
Probing initial transient oligomerization events facilitating Huntingtin fibril nucleation at atomic resolution by relaxation-based NMR.
Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3562-3571. doi: 10.1073/pnas.1821216116. Epub 2019 Feb 11.
3
Self-Assembly of Human Profilin-1 Detected by Carr-Purcell-Meiboom-Gill Nuclear Magnetic Resonance (CPMG NMR) Spectroscopy.
Biochemistry. 2017 Feb 7;56(5):692-703. doi: 10.1021/acs.biochem.6b01263. Epub 2017 Jan 20.
4
General expressions for R relaxation for N-site chemical exchange and the special case of linear chains.
J Magn Reson. 2017 Jan;274:36-45. doi: 10.1016/j.jmr.2016.10.015. Epub 2016 Oct 27.
5
Huntington disease.
Nat Rev Dis Primers. 2015 Apr 23;1:15005. doi: 10.1038/nrdp.2015.5.
6
Allosteric switch regulates protein-protein binding through collective motion.
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3269-74. doi: 10.1073/pnas.1519609113. Epub 2016 Mar 9.
8
Chemical exchange in biomacromolecules: past, present, and future.
J Magn Reson. 2014 Apr;241:3-17. doi: 10.1016/j.jmr.2014.01.008.
9
Increasing the exchange time-scale that can be probed by CPMG relaxation dispersion NMR.
J Phys Chem B. 2011 Dec 15;115(49):14891-900. doi: 10.1021/jp209610v. Epub 2011 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验