Suppr超能文献

N 位点化学交换的 R 弛豫的一般表达式以及线性链的特殊情况。

General expressions for R relaxation for N-site chemical exchange and the special case of linear chains.

作者信息

Koss Hans, Rance Mark, Palmer Arthur G

机构信息

Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, United States.

Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45267, United States.

出版信息

J Magn Reson. 2017 Jan;274:36-45. doi: 10.1016/j.jmr.2016.10.015. Epub 2016 Oct 27.

Abstract

Exploration of dynamic processes in proteins and nucleic acids by spin-locking NMR experiments has been facilitated by the development of theoretical expressions for the R relaxation rate constant covering a variety of kinetic situations. Herein, we present a generalized approximation to the chemical exchange, R, component of R for arbitrary kinetic schemes, assuming the presence of a dominant major site population, derived from the negative reciprocal trace of the inverse Bloch-McConnell evolution matrix. This approximation is equivalent to first-order truncation of the characteristic polynomial derived from the Bloch-McConnell evolution matrix. For three- and four-site chemical exchange, the first-order approximations are sufficient to distinguish different kinetic schemes. We also introduce an approach to calculate R for linear N-site schemes, using the matrix determinant lemma to reduce the corresponding 3N×3N Bloch-McConnell evolution matrix to a 3×3 matrix. The first- and second order-expansions of the determinant of this 3×3 matrix are closely related to previously derived equations for two-site exchange. The second-order approximations for linear N-site schemes can be used to obtain more accurate approximations for non-linear N-site schemes, such as triangular three-site or star four-site topologies. The expressions presented herein provide powerful means for the estimation of R contributions for both low (CEST-limit) and high (R-limit) radiofrequency field strengths, provided that the population of one state is dominant. The general nature of the new expressions allows for consideration of complex kinetic situations in the analysis of NMR spin relaxation data.

摘要

通过自旋锁定核磁共振实验对蛋白质和核酸中的动态过程进行探索,得益于针对涵盖各种动力学情况的弛豫速率常数(R)的理论表达式的发展。在此,我们针对任意动力学方案,给出了(R)的化学交换部分(R)的广义近似,假设存在占主导地位的主要位点群体,该近似源自逆布洛赫 - 麦康奈尔演化矩阵的负倒数迹。此近似等同于从布洛赫 - 麦康奈尔演化矩阵导出的特征多项式的一阶截断。对于三位点和四位点化学交换,一阶近似足以区分不同的动力学方案。我们还介绍了一种计算线性(N)位点方案的(R)的方法,利用矩阵行列式引理将相应的(3N×3N)布洛赫 - 麦康奈尔演化矩阵简化为一个(3×3)矩阵。这个(3×3)矩阵行列式的一阶和二阶展开与先前推导的两位点交换方程密切相关。线性(N)位点方案的二阶近似可用于获得非线性(N)位点方案(如三角形三位点或星形四位点拓扑)更精确的近似。本文给出的表达式为估计低(CEST 极限)和高((R)极限)射频场强下(R)的贡献提供了有力手段,前提是一种状态的群体占主导。新表达式的一般性使得在核磁共振自旋弛豫数据分析中能够考虑复杂的动力学情况。

相似文献

1
General expressions for R relaxation for N-site chemical exchange and the special case of linear chains.
J Magn Reson. 2017 Jan;274:36-45. doi: 10.1016/j.jmr.2016.10.015. Epub 2016 Oct 27.
2
Compact expressions for R relaxation for N-site chemical exchange using Schur decomposition.
J Magn Reson. 2020 Apr;313:106705. doi: 10.1016/j.jmr.2020.106705. Epub 2020 Mar 14.
3
Site-based description of R relaxation in local reference frames.
J Magn Reson. 2023 Feb;347:107366. doi: 10.1016/j.jmr.2023.107366. Epub 2023 Jan 9.
4
R1rho relaxation outside of the fast-exchange limit.
J Magn Reson. 2002 Jan;154(1):157-60. doi: 10.1006/jmre.2001.2466.
5
Approximate solutions of the Bloch-McConnell equations for two-site chemical exchange.
Chemphyschem. 2004 Jun 21;5(6):787-93. doi: 10.1002/cphc.200301051.
6
Characterizing micro-to-millisecond chemical exchange in nucleic acids using off-resonance R relaxation dispersion.
Prog Nucl Magn Reson Spectrosc. 2019 Jun-Aug;112-113:55-102. doi: 10.1016/j.pnmrs.2019.05.002. Epub 2019 May 11.
8
Chemical Exchange.
Methods Enzymol. 2019;615:177-236. doi: 10.1016/bs.mie.2018.09.028. Epub 2018 Dec 4.
10
General Expressions for Carr-Purcell-Meiboom-Gill Relaxation Dispersion for N-Site Chemical Exchange.
Biochemistry. 2018 Aug 7;57(31):4753-4763. doi: 10.1021/acs.biochem.8b00370. Epub 2018 Jul 30.

引用本文的文献

1
Dynamic basis for dA•dGTP and dA•d8OGTP misincorporation via Hoogsteen base pairs.
Nat Chem Biol. 2023 Jul;19(7):900-910. doi: 10.1038/s41589-023-01306-5. Epub 2023 Apr 24.
2
Site-based description of R relaxation in local reference frames.
J Magn Reson. 2023 Feb;347:107366. doi: 10.1016/j.jmr.2023.107366. Epub 2023 Jan 9.
3
NMR Studies of Aromatic Ring Flips to Probe Conformational Fluctuations in Proteins.
J Phys Chem B. 2023 Jan 26;127(3):591-599. doi: 10.1021/acs.jpcb.2c07258. Epub 2023 Jan 14.
4
The A39G FF domain folds on a volcano-shaped free energy surface via separate pathways.
Proc Natl Acad Sci U S A. 2021 Nov 16;118(46). doi: 10.1073/pnas.2115113118.
6
Theoretical classification of exchange geometries from the perspective of NMR relaxation dispersion.
J Magn Reson. 2021 Jul;328:107003. doi: 10.1016/j.jmr.2021.107003. Epub 2021 May 11.
7
Discrete-state stochastic kinetic models for target DNA search by proteins: Theory and experimental applications.
Biophys Chem. 2021 Feb;269:106521. doi: 10.1016/j.bpc.2020.106521. Epub 2020 Dec 10.
8
Protein Dynamics revealed by NMR Relaxation Methods.
Emerg Top Life Sci. 2020 Apr;2(1):93-105. doi: 10.1042/etls20170139. Epub 2020 Apr 18.
9
Algebraic expressions for Carr-Purcell-Meiboom-Gill relaxation dispersion for N-site chemical exchange.
J Magn Reson. 2020 Dec;321:106846. doi: 10.1016/j.jmr.2020.106846. Epub 2020 Oct 8.
10
A suite of F based relaxation dispersion experiments to assess biomolecular motions.
J Biomol NMR. 2020 Dec;74(12):753-766. doi: 10.1007/s10858-020-00348-4. Epub 2020 Sep 30.

本文引用的文献

2
A dynamic look backward and forward.
J Magn Reson. 2016 May;266:73-80. doi: 10.1016/j.jmr.2016.01.018. Epub 2016 Feb 11.
3
Nonadiabatic exchange dynamics during adiabatic frequency sweeps.
J Magn Reson. 2016 Apr;265:45-51. doi: 10.1016/j.jmr.2016.01.017. Epub 2016 Jan 28.
4
Intrinsic unfoldase/foldase activity of the chaperonin GroEL directly demonstrated using multinuclear relaxation-based NMR.
Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):8817-23. doi: 10.1073/pnas.1510083112. Epub 2015 Jun 29.
5
Population shuffling of protein conformations.
Angew Chem Int Ed Engl. 2015 Jan 2;54(1):207-10. doi: 10.1002/anie.201408890. Epub 2014 Nov 6.
6
Chemical exchange in biomacromolecules: past, present, and future.
J Magn Reson. 2014 Apr;241:3-17. doi: 10.1016/j.jmr.2014.01.008.
7
An R(1ρ) expression for a spin in chemical exchange between two sites with unequal transverse relaxation rates.
J Biomol NMR. 2013 Feb;55(2):211-8. doi: 10.1007/s10858-012-9694-6. Epub 2013 Jan 23.
8
Heteronuclear Adiabatic Relaxation Dispersion (HARD) for quantitative analysis of conformational dynamics in proteins.
J Magn Reson. 2012 Jun;219:75-82. doi: 10.1016/j.jmr.2012.03.024. Epub 2012 Apr 6.
9
The feasibility of parameterizing four-state equilibria using relaxation dispersion measurements.
J Biomol NMR. 2011 Sep;51(1-2):57-70. doi: 10.1007/s10858-011-9541-1. Epub 2011 Sep 27.
10
Probing slow protein dynamics by adiabatic R(1rho) and R(2rho) NMR experiments.
J Am Chem Soc. 2010 Jul 28;132(29):9979-81. doi: 10.1021/ja1038787.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验