Suppr超能文献

NMR 光谱学、激发态与细胞生物学问题的相关性——亨廷顿病的研究:亨廷顿蛋白的短暂预核形成四聚体及其对亨廷顿病的启示。

NMR spectroscopy, excited states and relevance to problems in cell biology - transient pre-nucleation tetramerization of huntingtin and insights into Huntington's disease.

机构信息

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.

出版信息

J Cell Sci. 2022 Jun 15;135(12). doi: 10.1242/jcs.258695.

Abstract

Solution nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for analyzing three-dimensional structure and dynamics of macromolecules at atomic resolution. Recent advances have exploited the unique properties of NMR in exchanging systems to detect, characterize and visualize excited sparsely populated states of biological macromolecules and their complexes, which are only transient. These states are invisible to conventional biophysical techniques, and play a key role in many processes, including molecular recognition, protein folding, enzyme catalysis, assembly and fibril formation. All the NMR techniques make use of exchange between sparsely populated NMR-invisible and highly populated NMR-visible states to transfer a magnetization property from the invisible state to the visible one where it can be easily detected and quantified. There are three classes of NMR experiments that rely on differences in distance, chemical shift or transverse relaxation (molecular mass) between the NMR-visible and -invisible species. Here, I illustrate the application of these methods to unravel the complex mechanism of sub-millisecond pre-nucleation oligomerization of the N-terminal region of huntingtin, encoded by exon-1 of the huntingtin gene, where CAG expansion leads to Huntington's disease, a fatal autosomal-dominant neurodegenerative condition. I also discuss how inhibition of tetramerization blocks the much slower (by many orders of magnitude) process of fibril formation.

摘要

溶液核磁共振(NMR)光谱学是一种强大的技术,可以在原子分辨率下分析大分子的三维结构和动力学。最近的进展利用 NMR 在交换系统中的独特性质来检测、表征和可视化生物大分子及其复合物中稀疏占据的激发态,这些状态是瞬时的。这些状态是常规生物物理技术无法观察到的,它们在许多过程中起着关键作用,包括分子识别、蛋白质折叠、酶催化、组装和纤维形成。所有的 NMR 技术都利用稀疏占据的 NMR 不可见状态和高度占据的 NMR 可见状态之间的交换,将磁化性质从不可见状态转移到可见状态,在可见状态下可以很容易地检测和定量。有三类 NMR 实验依赖于 NMR 可见和不可见物种之间的距离、化学位移或横向弛豫(分子质量)的差异。在这里,我将说明这些方法的应用,以揭示由 huntingtin 基因外显子 1 编码的 huntingtin N 端区域的亚毫秒前核寡聚化的复杂机制,CAG 扩展导致亨廷顿病,一种致命的常染色体显性神经退行性疾病。我还讨论了如何抑制四聚化来阻止纤维形成的慢得多(数量级上)的过程。

相似文献

本文引用的文献

1
Amino acid homorepeats in proteins.蛋白质中的氨基酸同型重复序列。
Nat Rev Chem. 2020 Aug;4(8):420-434. doi: 10.1038/s41570-020-0204-1. Epub 2020 Jul 21.
3
Radio Signals from Live Cells: The Coming of Age of In-Cell Solution NMR.活细胞的射频信号:细胞内溶液 NMR 的崭新时代。
Chem Rev. 2022 May 25;122(10):9267-9306. doi: 10.1021/acs.chemrev.1c00790. Epub 2022 Jan 21.
4
Large Chaperone Complexes Through the Lens of Nuclear Magnetic Resonance Spectroscopy.大伴侣复合物的核磁共振波谱学研究。
Annu Rev Biophys. 2022 May 9;51:223-246. doi: 10.1146/annurev-biophys-090921-120150. Epub 2022 Jan 19.
10
NMR illuminates intrinsic disorder.NMR 揭示了固有无序。
Curr Opin Struct Biol. 2021 Oct;70:44-52. doi: 10.1016/j.sbi.2021.03.015. Epub 2021 May 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验