Department of Chemistry, Washington University at St. Louis, St. Louis, Missouri 63130, United States.
Department of Chemistry, Massachusetts Institute of Technology, Boston, Massachusetts 02139, United States.
J Am Chem Soc. 2020 Aug 5;142(31):13372-13383. doi: 10.1021/jacs.9b11950. Epub 2020 Jul 24.
Although knowledge of the coordination chemistry and metal-withholding function of the innate immune protein human calprotectin (hCP) has broadened in recent years, understanding of its Ca-binding properties in solution remains incomplete. In particular, the molecular basis by which Ca binding affects structure and enhances the functional properties of this remarkable transition-metal-sequestering protein has remained enigmatic. To achieve a molecular picture of how Ca binding triggers hCP oligomerization, increases protease stability, and enhances antimicrobial activity, we implemented a new integrated mass spectrometry (MS)-based approach that can be readily generalized to study other protein-metal and protein-ligand interactions. Three MS-based methods (hydrogen/deuterium exchange MS kinetics; protein-ligand interactions in solution by MS, titration, and H/D exchange (PLIMSTEX); and native MS) provided a comprehensive analysis of Ca binding and oligomerization to hCP without modifying the protein in any way. Integration of these methods allowed us to (i) observe the four regions of hCP that serve as Ca-binding sites, (ii) determine the binding stoichiometry to be four Ca per CP heterodimer and eight Ca per CP heterotetramer, (iii) establish the protein-to-Ca molar ratio that causes the dimer-to-tetramer transition, and (iv) calculate the binding affinities associated with the four Ca-binding sites per heterodimer. These quantitative results support a model in which hCP exists in its heterodimeric form and is at most half-bound to Ca in the cytoplasm of resting cells. With release into the extracellular space, hCP encounters elevated Ca concentrations and binds more Ca ions, forming a heterotetramer that is poised to compete with microbial pathogens for essential metal nutrients.
尽管近年来人们对先天免疫蛋白人钙卫蛋白(hCP)的配位化学和金属结合功能有了更广泛的了解,但对其在溶液中的 Ca 结合特性的理解仍不完整。特别是,Ca 结合如何影响结构并增强这种非凡的过渡金属螯合蛋白的功能特性的分子基础仍然是个谜。为了获得 Ca 结合如何引发 hCP 寡聚化、增加蛋白酶稳定性和增强抗菌活性的分子图像,我们实施了一种新的基于质谱(MS)的综合方法,该方法可以很容易地推广到研究其他蛋白质-金属和蛋白质-配体相互作用。三种基于 MS 的方法(氢/氘交换 MS 动力学;通过 MS、滴定和 H/D 交换(PLIMSTEX)测定溶液中的蛋白质-配体相互作用;以及天然 MS)对 hCP 的 Ca 结合和寡聚化进行了全面分析,而不会以任何方式修饰蛋白质。这些方法的整合使我们能够 (i) 观察 hCP 作为 Ca 结合位点的四个区域,(ii) 确定结合的化学计量比为每个 CP 异二聚体四个 Ca 和每个 CP 异四聚体八个 Ca,(iii) 确定导致二聚体到四聚体转变的蛋白与 Ca 的摩尔比,以及 (iv) 计算与每个异二聚体的四个 Ca 结合位点相关的结合亲和力。这些定量结果支持了这样一种模型,即 hCP 以其异二聚体形式存在,并且在静息细胞的细胞质中最多与 Ca 结合一半。当释放到细胞外空间时,hCP 遇到升高的 Ca 浓度并结合更多的 Ca 离子,形成一个异四聚体,准备与微生物病原体竞争必需的金属营养物。