Suppr超能文献

遗传和功能分析表明 FAN1 是多种亨廷顿病修饰效应的来源。

Genetic and Functional Analyses Point to FAN1 as the Source of Multiple Huntington Disease Modifier Effects.

机构信息

Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.

Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.

出版信息

Am J Hum Genet. 2020 Jul 2;107(1):96-110. doi: 10.1016/j.ajhg.2020.05.012. Epub 2020 Jun 25.

Abstract

A recent genome-wide association study of Huntington disease (HD) implicated genes involved in DNA maintenance processes as modifiers of onset, including multiple genome-wide significant signals in a chr15 region containing the DNA repair gene Fanconi-Associated Nuclease 1 (FAN1). Here, we have carried out detailed genetic, molecular, and cellular investigation of the modifiers at this locus. We find that missense changes within or near the DNA-binding domain (p.Arg507His and p.Arg377Trp) reduce FAN1's DNA-binding activity and its capacity to rescue mitomycin C-induced cytotoxicity, accounting for two infrequent onset-hastening modifier signals. We also idenified a third onset-hastening modifier signal whose mechanism of action remains uncertain but does not involve an amino acid change in FAN1. We present additional evidence that a frequent onset-delaying modifier signal does not alter FAN1 coding sequence but is associated with increased FAN1 mRNA expression in the cerebral cortex. Consistent with these findings and other cellular overexpression and/or suppression studies, knockout of FAN1 increased CAG repeat expansion in HD-induced pluripotent stem cells. Together, these studies support the process of somatic CAG repeat expansion as a therapeutic target in HD, and they clearly indicate that multiple genetic variations act by different means through FAN1 to influence HD onset in a manner that is largely additive, except in the rare circumstance that two onset-hastening alleles are present. Thus, an individual's particular combination of FAN1 haplotypes may influence their suitability for HD clinical trials, particularly if the therapeutic agent aims to reduce CAG repeat instability.

摘要

最近一项亨廷顿病(HD)的全基因组关联研究表明,参与 DNA 维护过程的基因是发病的修饰因子,包括在包含 DNA 修复基因范可尼相关核酸酶 1(FAN1)的 chr15 区域中多个全基因组显著信号。在这里,我们对该基因座的修饰因子进行了详细的遗传、分子和细胞研究。我们发现,DNA 结合域内或附近的错义变化(p.Arg507His 和 p.Arg377Trp)降低了 FAN1 的 DNA 结合活性及其挽救丝裂霉素 C 诱导的细胞毒性的能力,解释了两个罕见的发病加速修饰信号。我们还鉴定了第三个发病加速修饰信号,其作用机制尚不清楚,但不涉及 FAN1 中的氨基酸变化。我们提供了额外的证据表明,一个常见的发病延迟修饰信号不改变 FAN1 的编码序列,但与大脑皮层中 FAN1 mRNA 表达的增加有关。这些发现以及其他细胞过表达和/或抑制研究一致表明,FAN1 的敲除增加了 HD 诱导多能干细胞中 CAG 重复扩展。总之,这些研究支持体细胞 CAG 重复扩展作为 HD 的治疗靶点,并且它们清楚地表明,多种遗传变异通过不同的方式通过 FAN1 来影响 HD 的发病,其方式在很大程度上是累加的,除非存在两个发病加速等位基因。因此,个体 FAN1 单倍型的特定组合可能会影响他们是否适合参加 HD 临床试验,特别是如果治疗剂旨在降低 CAG 重复不稳定性。

相似文献

1
Genetic and Functional Analyses Point to FAN1 as the Source of Multiple Huntington Disease Modifier Effects.
Am J Hum Genet. 2020 Jul 2;107(1):96-110. doi: 10.1016/j.ajhg.2020.05.012. Epub 2020 Jun 25.
3
Posttranscriptional regulation of by miR-124-3p at rs3512 underlies onset-delaying genetic modification in Huntington's disease.
Proc Natl Acad Sci U S A. 2024 Apr 16;121(16):e2322924121. doi: 10.1073/pnas.2322924121. Epub 2024 Apr 12.
4
FAN1, a DNA Repair Nuclease, as a Modifier of Repeat Expansion Disorders.
J Huntingtons Dis. 2021;10(1):95-122. doi: 10.3233/JHD-200448.
6
FAN1 modifies Huntington's disease progression by stabilizing the expanded HTT CAG repeat.
Hum Mol Genet. 2019 Feb 15;28(4):650-661. doi: 10.1093/hmg/ddy375.
10
Structural and molecular basis of PCNA-activated FAN1 nuclease function in DNA repair.
Nat Commun. 2025 May 14;16(1):4411. doi: 10.1038/s41467-025-59323-y.

引用本文的文献

2
Boosting Brain Clean-Up: Can Targeting UPS Genes Offer Neuroprotection?
Mol Neurobiol. 2025 Aug 16. doi: 10.1007/s12035-025-05263-z.
4
Structural and molecular basis of PCNA-activated FAN1 nuclease function in DNA repair.
Nat Commun. 2025 May 14;16(1):4411. doi: 10.1038/s41467-025-59323-y.
8
Long somatic DNA-repeat expansion drives neurodegeneration in Huntington's disease.
Cell. 2025 Feb 6;188(3):623-639.e19. doi: 10.1016/j.cell.2024.11.038. Epub 2025 Jan 16.
9
Recurrent DNA nicks drive massive expansions of (GAA) repeats.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2413298121. doi: 10.1073/pnas.2413298121. Epub 2024 Nov 25.

本文引用的文献

2
CAG Repeat Not Polyglutamine Length Determines Timing of Huntington's Disease Onset.
Cell. 2019 Aug 8;178(4):887-900.e14. doi: 10.1016/j.cell.2019.06.036.
3
FAN1 modifies Huntington's disease progression by stabilizing the expanded HTT CAG repeat.
Hum Mol Genet. 2019 Feb 15;28(4):650-661. doi: 10.1093/hmg/ddy375.
4
Genetic Modification of Huntington Disease Acts Early in the Prediagnosis Phase.
Am J Hum Genet. 2018 Sep 6;103(3):349-357. doi: 10.1016/j.ajhg.2018.07.017. Epub 2018 Aug 16.
5
FAN1 protects against repeat expansions in a Fragile X mouse model.
DNA Repair (Amst). 2018 Sep;69:1-5. doi: 10.1016/j.dnarep.2018.07.001. Epub 2018 Jul 5.
6
Population-specific genetic modification of Huntington's disease in Venezuela.
PLoS Genet. 2018 May 11;14(5):e1007274. doi: 10.1371/journal.pgen.1007274. eCollection 2018 May.
7
Phenotype risk scores identify patients with unrecognized Mendelian disease patterns.
Science. 2018 Mar 16;359(6381):1233-1239. doi: 10.1126/science.aal4043.
8
Huntington disease.
Nat Rev Dis Primers. 2015 Apr 23;1:15005. doi: 10.1038/nrdp.2015.5.
9
DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases.
Ann Neurol. 2016 Jun;79(6):983-90. doi: 10.1002/ana.24656. Epub 2016 May 6.
10
The HTT CAG-Expansion Mutation Determines Age at Death but Not Disease Duration in Huntington Disease.
Am J Hum Genet. 2016 Feb 4;98(2):287-98. doi: 10.1016/j.ajhg.2015.12.018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验