Cancer Biology and Evolution Program, Tampa, FL, 33612, USA.
Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL, 33612, USA.
BMC Evol Biol. 2020 Jun 26;20(1):75. doi: 10.1186/s12862-020-01641-4.
We hypothesize prebiotic evolution of self-replicating macro-molecules (Alberts, Molecular biology of the cell, 2015; Orgel, Crit Rev Biochem Mol Biol 39:99-123, 2004; Hud, Nat Commun 9:5171) favoured the constituent nucleotides and biophysical properties observed in the RNA and DNA of modern organisms. Assumed initial conditions are a shallow tide pool, containing a racemic mix of diverse nucleotide monomers (Barks et al., Chembiochem 11:1240-1243, 2010; Krishnamurthy, Nat Commun 9:5175, 2018; Hirao, Curr Opin Chem Biol 10:622-627), subject to day/night thermal fluctuations (Piccirilli et al., Nature 343:33-37, 1990). Self-replication, like Polymerase Chain Reactions, followed as higher daytime thermal energy "melted" inter-strand hydrogen bonds causing strand separation while solar UV radiation increased prebiotic nucleobase formation (Szathmary, Proc Biol Sci 245:91-99, 1991; Materese et al., Astrobiology 17:761-770, 2017; Bera et al., Astrobiology 17:771-785, 2017). Lower night energies allowed free monomers to form hydrogen bonds with their template counterparts leading to daughter strand synthesis (Hirao, Biotechniques 40:711, 2006).
Evolutionary selection favoured increasing strand length to maximize auto-catalytic function in RNA and polymer stability in double stranded DNA (Krishnamurthy, Chemistry 24:16708-16715, 2018; Szathmary, Nat Rev Genet 4:995-1001, 2003). However, synthesis of the full daughter strand before daytime temperatures produced strand separation, longer polymer length required increased speed of self-replication. Computer simulations demonstrate optimal polynucleotide autocatalytic speed is achieved when the constituent nucleotides possess a left-right asymmetry that decreases the hydrogen bond kinetic barrier for the free nucleotide attachment to the template on one side and increases bond barrier on the other side preventing it from releasing prior to covalent bond formation. This phenomenon is similar to asymmetric kinetics observed during polymerization of the front and the back ends of linear cytoskeletal proteins such as actin and microtubules (Orgel, Nature 343:18-20, 1990; Henry, Curr Opin Chem Biol 7:727-733, 2003; Walker et al., J Cell Biol 108:931-937, 1989; Crevenna et al., J Biol Chem 288:12102-12113, 2013). Since rotation of the nucleotide would disrupt the asymmetry, the optimal nucleotides must form two or more hydrogen bonds with their counterpart on the template strand. All nucleotides in modern RNA and DNA have these predicted properties. Our models demonstrate these constraints on the properties of constituent monomers result in biophysical properties found in modern DNA and RNA including strand directionality, anti-parallel strand orientation, homochirality, quadruplet alphabet, and complementary base pairing. Furthermore, competition between RNA and DNA auto-replicators for 3 nucleotides in common permit states coexistence and possible cooperative interactions that could be incorporated into nascent living systems.
Our findings demonstrate the molecular properties of DNA/RNA could have emerged from Darwinian competition among macromolecular replicators that selected nucleotide monomers that maximized the speed of autocatalysis.
我们假设,自我复制的大分子(Alberts,Molecular Biology of the Cell,2015;Orgel,Crit Rev Biochem Mol Biol 39:99-123,2004;Hud,Nat Commun 9:5171)的前生物进化有利于现代生物体内观察到的组成核苷酸和生物物理特性。假设的初始条件是一个浅潮池,其中包含各种核苷酸单体的外消旋混合物(Barks 等人,Chembiochem 11:1240-1243,2010;Krishnamurthy,Nat Commun 9:5175,2018;Hirao,Curr Opin Chem Biol 10:622-627),受昼夜热波动的影响(Piccirilli 等人,Nature 343:33-37,1990)。自我复制,就像聚合酶链反应一样,随着白天更高的热能“融化”了氢键,导致链分离,而太阳紫外线辐射增加了前生物核碱基的形成(Szathmary,Proc Biol Sci 245:91-99,1991;Materese 等人,Astrobiology 17:761-770,2017;Bera 等人,Astrobiology 17:771-785,2017)。较低的夜间能量允许游离单体与模板对应物形成氢键,从而导致子链合成(Hirao,Biotechniques 40:711,2006)。
进化选择有利于增加链长,以最大限度地提高 RNA 的自动催化功能和双链 DNA 的聚合物稳定性(Krishnamurthy,Chemistry 24:16708-16715,2018;Szathmary,Nat Rev Genet 4:995-1001,2003)。然而,在白天温度产生链分离之前合成完整的子链需要更长的聚合物长度,这需要提高自我复制的速度。计算机模拟表明,当组成核苷酸具有左右不对称性时,可以实现最佳多核苷酸自动催化速度,这种不对称性降低了游离核苷酸附着在模板上的氢键动力学障碍,同时增加了另一侧的键障碍,防止其在形成共价键之前释放。这种现象类似于线性细胞骨架蛋白(如肌动蛋白和微管)前后端聚合过程中观察到的不对称动力学(Orgel,Nature 343:18-20,1990;Henry,Curr Opin Chem Biol 7:727-733,2003;Walker 等人,J Cell Biol 108:931-937,1989;Crevenna 等人,J Biol Chem 288:12102-12113,2013)。由于核苷酸的旋转会破坏不对称性,因此最佳核苷酸必须与模板链上的对应物形成两个或更多的氢键。现代 RNA 和 DNA 中的所有核苷酸都具有这些预测特性。我们的模型表明,这些组成单体的特性限制导致了现代 DNA 和 RNA 中发现的生物物理特性,包括链方向性、反平行链取向、同手性、四联体字母表和互补碱基配对。此外,RNA 和 DNA 自动复制体之间对 3 个核苷酸的竞争允许共存状态和可能的合作相互作用,这些相互作用可以被纳入新生的生命系统。
我们的研究结果表明,DNA/RNA 的分子特性可能是从自我复制大分子之间的达尔文竞争中出现的,这种竞争选择了最大化自动催化速度的核苷酸单体。