Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada.
Centre de Recherche Sur Le Cancer, Centre de Recherche du CHU de Québec-Université Laval, 2705 Laurier Blvd, Bloc R4778, Québec, G1V4G2, Canada.
Sci Rep. 2020 Jun 26;10(1):10464. doi: 10.1038/s41598-020-67525-1.
Triple negative breast cancer (TNBC) is one of the most aggressive form of breast cancer (BC) with the highest mortality due to high rate of relapse, resistance, and lack of an effective treatment. Various molecular approaches have been used to target TNBC but with little success. Here, using machine learning algorithms, we analyzed the available BC data from the Cancer Genome Atlas Network (TCGA) and have identified two potential genes, TBC1D9 (TBC1 domain family member 9) and MFGE8 (Milk Fat Globule-EGF Factor 8 Protein), that could successfully differentiate TNBC from non-TNBC, irrespective of their heterogeneity. TBC1D9 is under-expressed in TNBC as compared to non-TNBC patients, while MFGE8 is over-expressed. Overexpression of TBC1D9 has a better prognosis whereas overexpression of MFGE8 correlates with a poor prognosis. Protein-protein interaction analysis by affinity purification mass spectrometry (AP-MS) and proximity biotinylation (BioID) experiments identified a role for TBC1D9 in maintaining cellular integrity, whereas MFGE8 would be involved in various tumor survival processes. These promising genes could serve as biomarkers for TNBC and deserve further investigation as they have the potential to be developed as therapeutic targets for TNBC.
三阴性乳腺癌(TNBC)是乳腺癌(BC)中最具侵袭性的一种,由于复发率高、耐药性强以及缺乏有效治疗方法,死亡率最高。已经使用了各种分子方法来靶向 TNBC,但收效甚微。在这里,我们使用机器学习算法,分析了癌症基因组图谱网络(TCGA)中现有的 BC 数据,已经确定了两个潜在的基因,TBC1D9(TBC1 结构域家族成员 9)和 MFGE8(乳脂肪球 EGF 因子 8 蛋白),它们可以成功地区分 TNBC 和非 TNBC,而不受其异质性的影响。与非 TNBC 患者相比,TBC1D9 在 TNBC 中的表达较低,而 MFGE8 的表达则较高。TBC1D9 的过表达与更好的预后相关,而 MFGE8 的过表达与较差的预后相关。通过亲和纯化质谱(AP-MS)和邻近生物素化(BioID)实验的蛋白质-蛋白质相互作用分析表明,TBC1D9 在维持细胞完整性方面发挥作用,而 MFGE8 则可能参与各种肿瘤存活过程。这些有前途的基因可以作为 TNBC 的生物标志物,值得进一步研究,因为它们有可能被开发为 TNBC 的治疗靶点。