Suppr超能文献

术前计算机断层扫描引导的胃癌无病生存预测:一项多中心放射组学研究

Preoperative computed tomography-guided disease-free survival prediction in gastric cancer: a multicenter radiomics study.

作者信息

Wang Siwen, Feng Caizhen, Dong Di, Li Hailin, Zhou Jing, Ye Yingjiang, Liu Zaiyi, Tian Jie, Wang Yi

机构信息

CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.

School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Med Phys. 2020 Oct;47(10):4862-4871. doi: 10.1002/mp.14350. Epub 2020 Aug 5.

Abstract

PURPOSE

Preoperative and noninvasive prognosis evaluation remains challenging for gastric cancer. Novel preoperative prognostic biomarkers should be investigated. This study aimed to develop multidetector-row computed tomography (MDCT)-guided prognostic models to direct follow-up strategy and improve prognosis.

METHODS

A retrospective dataset of 353 gastric cancer patients were enrolled from two centers and allocated to three cohorts: training cohort (n = 166), internal validation cohort (n = 83), and external validation cohort (n = 104). Quantitative radiomic features were extracted from MDCT images. The least absolute shrinkage and selection operator penalized Cox regression was adopted to construct a radiomic signature. A radiomic nomogram was established by integrating the radiomic signature and significant clinical risk factors. We also built a preoperative tumor-node-metastasis staging model for comparison. All models were evaluated considering the abilities of risk stratification, discrimination, calibration, and clinical use.

RESULTS

In the two validation cohorts, the established four-feature radiomic signature showed robust risk stratification power (P = 0.0260 and 0.0003, log-rank test). The radiomic nomogram incorporated radiomic signature, extramural vessel invasion, clinical T stage, and clinical N stage, outperforming all the other models (concordance index = 0.720 and 0.727) with good calibration and decision benefits. Also, the 2-yr disease-free survival (DFS) prediction was most effective (time-dependent area under curve = 0.771 and 0.765). Moreover, subgroup analysis indicated that the radiomic signature was more sensitive in risk stratifying patients with advanced clinical T/N stage.

CONCLUSIONS

The proposed MDCT-guided radiomic signature was verified as a prognostic factor for gastric cancer. The radiomic nomogram was a noninvasive auxiliary model for preoperative individualized DFS prediction, holding potential in promoting treatment strategy and clinical prognosis.

摘要

目的

胃癌的术前及非侵入性预后评估仍然具有挑战性。应研究新型术前预后生物标志物。本研究旨在开发多排螺旋计算机断层扫描(MDCT)引导的预后模型,以指导随访策略并改善预后。

方法

从两个中心纳入353例胃癌患者的回顾性数据集,并将其分配到三个队列中:训练队列(n = 166)、内部验证队列(n = 83)和外部验证队列(n = 104)。从MDCT图像中提取定量影像组学特征。采用最小绝对收缩和选择算子惩罚Cox回归构建影像组学特征。通过整合影像组学特征和显著的临床风险因素建立影像组学列线图。我们还构建了术前肿瘤-淋巴结-转移分期模型用于比较。所有模型均从风险分层、区分度、校准和临床应用能力方面进行评估。

结果

在两个验证队列中,所建立的四特征影像组学特征显示出强大的风险分层能力(P = 0.0260和0.0003,对数秩检验)。影像组学列线图纳入了影像组学特征、壁外血管侵犯、临床T分期和临床N分期,优于所有其他模型(一致性指数= 0.720和0.727),具有良好的校准和决策效益。此外,2年无病生存(DFS)预测最为有效(时间依赖性曲线下面积= 0.771和0.765)。此外,亚组分析表明,影像组学特征在对临床T/N分期较晚的患者进行风险分层时更为敏感。

结论

所提出的MDCT引导的影像组学特征被证实为胃癌的预后因素。影像组学列线图是一种用于术前个体化DFS预测的非侵入性辅助模型,在促进治疗策略和临床预后方面具有潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验