CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina.
Biochim Biophys Acta Mol Cell Res. 2020 Oct;1867(10):118787. doi: 10.1016/j.bbamcr.2020.118787. Epub 2020 Jun 24.
Manganese (Mn) plays an important role in many physiological processes. Nevertheless, Mn accumulation in the brain can cause a parkinsonian-like syndrome known as manganism. Unfortunately, the therapeutic options for this disease are scarce and of limited efficacy. For this reason, a great effort is being made to understand the cellular and molecular mechanisms involved in Mn toxicity in neuronal and glial cells. Even though evidence indicates that Mn activates autophagy in microglia, the consequences of this activation in cell death remain unknown. In this study, we demonstrated a key role of reactive oxygen species in Mn-induced damage in microglial cells. These species generated by Mn induce lysosomal alterations, LMP, cathepsins release and cell death. Besides, we described for the first time the kinetic of Mn-induced autophagy in BV-2 microglial cells and its relevance to cell fate. We found that Mn promotes a time-dependent increase in LC3-II and p62 expression levels, suggesting autophagy activation. Possibly, cells trigger autophagy to neutralize the risks associated with lysosomal rupture. In addition, pre-treatment with both Rapamycin and Melatonin enhanced autophagy and retarded Mn cytotoxicity. In summary, our results demonstrated that, despite the damage inflicted on a subset of lysosomes, the autophagic pathway plays a protective role in Mn-induced microglial cell death. We propose that 2 h Mn exposure will not induce disturbances in the autophagic flux. However, as time passes, the accumulated damage inside the cell could trigger a dysfunction of this mechanism. These findings may represent a valuable contribution to future research concerning manganism therapies.
锰(Mn)在许多生理过程中发挥着重要作用。然而,脑内 Mn 的积累会导致一种类似帕金森病的综合征,称为锰中毒。不幸的是,这种疾病的治疗选择很少,且效果有限。因此,人们正在努力了解 Mn 在神经元和神经胶质细胞中毒性的细胞和分子机制。尽管有证据表明 Mn 会激活小胶质细胞中的自噬,但这种激活对细胞死亡的影响尚不清楚。在这项研究中,我们证明了活性氧在 Mn 诱导的小胶质细胞损伤中的关键作用。Mn 产生的这些物质会引起溶酶体改变、LMP、组织蛋白酶释放和细胞死亡。此外,我们首次描述了 Mn 诱导的 BV-2 小胶质细胞自噬的动力学及其与细胞命运的相关性。我们发现 Mn 促进 LC3-II 和 p62 表达水平的时间依赖性增加,表明自噬的激活。可能是细胞触发自噬来中和与溶酶体破裂相关的风险。此外,雷帕霉素和褪黑素的预处理增强了自噬并延缓了 Mn 的细胞毒性。总之,我们的结果表明,尽管溶酶体的一部分受到了损伤,但自噬途径在 Mn 诱导的小胶质细胞死亡中发挥了保护作用。我们提出,2 小时 Mn 暴露不会引起自噬流的紊乱。然而,随着时间的推移,细胞内积累的损伤可能会触发这种机制的功能障碍。这些发现可能为未来有关锰中毒治疗的研究提供有价值的贡献。