Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore.
Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore.
Atherosclerosis. 2020 Jul;305:10-18. doi: 10.1016/j.atherosclerosis.2020.05.003. Epub 2020 Jun 10.
Lipid-rich foam cell macrophages drive atherosclerosis via several mechanisms, including inflammation, lipid uptake, lipid deposition and plaque vulnerability. The atheroma environment shapes macrophage function and phenotype; anti-inflammatory macrophages improve plaque stability while pro-inflammatory macrophages promote rupture. Current evidence suggests a variety of macrophage phenotypes occur in atherosclerotic plaques with local lipids, cytokines, oxidised phospholipids and pathogenic stimuli altering their phenotype. In this study, we addressed differential functioning of macrophage phenotypes via a systematic analysis of in vitro polarised, human monocyte-derived macrophage phenotypes, focussing on molecular events that regulate foam-cell formation.
We examined transcriptomes, protein levels and functionally determined lipid handling and foam cell formation capacity in macrophages polarised with IFNγ+LPS, IL-4, IL-10, oxPAPC and CXCL4.
RNA sequencing of differentially polarised macrophages revealed distinct gene expression changes, with enrichment in atherosclerosis and lipid-associated pathways. Analysis of lipid processing activity showed IL-4 and IL-10 macrophages have higher lipid uptake and foam cell formation activities, while inflammatory and oxPAPC macrophages displayed lower foam cell formation. Inflammatory macrophages showed low lipid uptake, while higher lipid uptake in oxPAPC macrophages was matched by increased lipid efflux capacity.
Atherosclerosis-associated macrophage polarisation dramatically affects lipid handling capacity underpinned by major transcriptomic changes and altered protein levels in lipid-handling gene expression. This leads to phenotype-specific differences in LDL uptake, cellular cholesterol levels and cholesterol efflux, informing how the plaque environment influences atherosclerosis progression by influencing macrophage phenotypes.
富含脂质的泡沫细胞巨噬细胞通过多种机制驱动动脉粥样硬化,包括炎症、脂质摄取、脂质沉积和斑块脆弱性。动脉粥样硬化斑块的环境塑造了巨噬细胞的功能和表型;抗炎型巨噬细胞可改善斑块稳定性,而促炎型巨噬细胞则促进斑块破裂。目前的证据表明,在动脉粥样硬化斑块中存在多种巨噬细胞表型,局部脂质、细胞因子、氧化型磷脂和致病刺激物改变其表型。在这项研究中,我们通过系统分析体外极化的人单核细胞衍生的巨噬细胞表型,研究了调节泡沫细胞形成的分子事件,来研究巨噬细胞表型的差异功能。
我们检测了 IFNγ+LPS、IL-4、IL-10、oxPAPC 和 CXCL4 极化的巨噬细胞的转录组、蛋白水平,并对其脂质处理和泡沫细胞形成能力进行了功能测定。
对差异极化的巨噬细胞进行 RNA 测序显示出明显的基因表达变化,与动脉粥样硬化和脂质相关途径富集。脂质处理活性分析表明,IL-4 和 IL-10 巨噬细胞具有更高的脂质摄取和泡沫细胞形成活性,而炎症和 oxPAPC 巨噬细胞则显示出较低的泡沫细胞形成能力。炎症型巨噬细胞表现出低脂质摄取,而 oxPAPC 巨噬细胞中更高的脂质摄取与增加的脂质外排能力相匹配。
动脉粥样硬化相关的巨噬细胞极化极大地影响了脂质处理能力,这是由主要的转录组变化和脂质处理基因表达的改变蛋白水平所支撑的。这导致 LDL 摄取、细胞胆固醇水平和胆固醇外排的表型特异性差异,为斑块环境如何通过影响巨噬细胞表型来影响动脉粥样硬化进展提供了信息。