Suppr超能文献

基于迁移学习与主成分分析融合的非霍奇金淋巴瘤亚型数字病理图像分类

Classification of digital pathological images of non-Hodgkin's lymphoma subtypes based on the fusion of transfer learning and principal component analysis.

作者信息

Zhang Jianfei, Cui Wensheng, Guo Xiaoyan, Wang Bo, Wang Zhen

机构信息

School of computer and control engineering, Qiqihar university, Qiqihar, 161006, China.

出版信息

Med Phys. 2020 Sep;47(9):4241-4253. doi: 10.1002/mp.14357. Epub 2020 Jul 18.

Abstract

PURPOSE

Non-Hodgkin's lymphoma (NHL) is a serious malignant disease. Delayed diagnosis will cause anemia, increased intracranial pressure, organ failure, and even lead to death. The current main trend in this area is to use deep learning (DL) for disease diagnosis. Extracting classification information from the digital pathology images by DL may realize the automated qualitative and quantitative analysis of NHL. Previously, DL has been used to classify NHL digital pathology images with some success. However, shortcomings still exist in the data preprocessing methods and feature extraction. Therefore, this paper presents a method for the classification of NHL subtypes based on the fusion of transfer learning (TL) and principal component analysis (PCA).

METHODS

First, the NHL digital pathology images were preprocessed by image division and segmentation and then input into the transfer models for fine-tuning and feature extraction. Second, PCA was used to map the extracted features. Finally, a neural network was used as a classifier to classify the mapped features. During the fine-tuning of the transfer models, two methods, freezing all feature extraction layers and fine-tuning all layers, were employed to select the optimal model with the best classification result among all the preselected transfer models. On this basis, the use of freezing the layers' location was discussed and analyzed.

RESULTS

The results show that the proposed method achieved average fivefold cross-validation accuracies of 100%, 99.73%, and 99.20% for chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and mantle cell lymphoma (MCL) tumor, and each category has standard deviations 0.00, 0.53, and 0.65, respectively, in the NHL reference dataset. The overall classification accuracy for fivefold cross-validation is 98.93%, which is an increase of 1.26% compared to the latest reported methods, having a lower standard deviation (1.00).

CONCLUSION

The method proposed in this paper achieves a high classification accuracy and strong model generalization for the classification of NHL, which makes it possible to conduct intelligent classification of NHL in clinical practice. Our proposed method has definite clinical value and research significance.

摘要

目的

非霍奇金淋巴瘤(NHL)是一种严重的恶性疾病。延迟诊断会导致贫血、颅内压升高、器官衰竭,甚至导致死亡。该领域当前的主要趋势是利用深度学习(DL)进行疾病诊断。通过深度学习从数字病理图像中提取分类信息,可能实现NHL的自动化定性和定量分析。此前,深度学习已用于对NHL数字病理图像进行分类并取得了一定成功。然而,数据预处理方法和特征提取方面仍存在不足。因此,本文提出一种基于迁移学习(TL)和主成分分析(PCA)融合的NHL亚型分类方法。

方法

首先,对NHL数字病理图像进行图像分割和划分预处理,然后输入迁移模型进行微调与特征提取。其次,使用主成分分析对提取的特征进行映射。最后,使用神经网络作为分类器对映射后的特征进行分类。在迁移模型的微调过程中,采用冻结所有特征提取层和微调所有层这两种方法,从所有预选的迁移模型中选择分类结果最佳的最优模型。在此基础上,对冻结层的位置使用情况进行了讨论和分析。

结果

结果表明,在NHL参考数据集中,所提方法对慢性淋巴细胞白血病(CLL)、滤泡性淋巴瘤(FL)和套细胞淋巴瘤(MCL)肿瘤实现的平均五折交叉验证准确率分别为100%、99.73%和99.20%,每类的标准差分别为0.00、0.53和0.65。五折交叉验证的总体分类准确率为98.93%,与最新报道的方法相比提高了1.26%,标准差更低(1.00)。

结论

本文提出的方法在NHL分类中实现了高分类准确率和强模型泛化能力,使得在临床实践中对NHL进行智能分类成为可能。我们提出的方法具有明确的临床价值和研究意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验