Carreras Joaquim, Roncador Giovanna, Hamoudi Rifat
Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan.
Monoclonal Antibodies Unit, Spanish National Cancer Research Center (Centro Nacional de Investigaciones Oncologicas, CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain.
Cancers (Basel). 2022 Oct 28;14(21):5318. doi: 10.3390/cancers14215318.
Artificial intelligence (AI) can identify actionable oncology biomarkers. This research integrates our previous analyses of non-Hodgkin lymphoma. We used gene expression and immunohistochemical data, focusing on the immune checkpoint, and added a new analysis of macrophages, including 3D rendering. The AI comprised machine learning (C5, Bayesian network, C&R, CHAID, discriminant analysis, KNN, logistic regression, LSVM, Quest, random forest, random trees, SVM, tree-AS, and XGBoost linear and tree) and artificial neural networks (multilayer perceptron and radial basis function). The series included chronic lymphocytic leukemia, mantle cell lymphoma, follicular lymphoma, Burkitt, diffuse large B-cell lymphoma, marginal zone lymphoma, and multiple myeloma, as well as acute myeloid leukemia and pan-cancer series. AI classified lymphoma subtypes and predicted overall survival accurately. Oncogenes and tumor suppressor genes were highlighted (MYC, BCL2, and TP53), along with immune microenvironment markers of tumor-associated macrophages (M2-like TAMs), T-cells and regulatory T lymphocytes (Tregs) (CD68, CD163, MARCO, CSF1R, CSF1, PD-L1/CD274, SIRPA, CD85A/LILRB3, CD47, IL10, TNFRSF14/HVEM, TNFAIP8, IKAROS, STAT3, NFKB, MAPK, PD-1/PDCD1, BTLA, and FOXP3), apoptosis (BCL2, CASP3, CASP8, PARP, and pathway-related MDM2, E2F1, CDK6, MYB, and LMO2), and metabolism (ENO3, GGA3). In conclusion, AI with immuno-oncology markers is a powerful predictive tool. Additionally, a review of recent literature was made.
人工智能(AI)能够识别可用于肿瘤治疗的生物标志物。本研究整合了我们之前对非霍奇金淋巴瘤的分析。我们使用了基因表达和免疫组化数据,重点关注免疫检查点,并增加了对巨噬细胞的新分析,包括三维渲染。该人工智能包括机器学习(C5、贝叶斯网络、C&R、CHAID、判别分析、KNN、逻辑回归、LSVM、Quest、随机森林、随机树、支持向量机、树状自适应分裂(tree-AS)以及XGBoost线性和树状算法)和人工神经网络(多层感知器和径向基函数)。该系列包括慢性淋巴细胞白血病、套细胞淋巴瘤、滤泡性淋巴瘤、伯基特淋巴瘤、弥漫性大B细胞淋巴瘤、边缘区淋巴瘤和多发性骨髓瘤,以及急性髓系白血病和泛癌系列。人工智能能够准确地对淋巴瘤亚型进行分类并预测总生存期。癌基因和肿瘤抑制基因(MYC、BCL2和TP53)以及肿瘤相关巨噬细胞(M2样肿瘤相关巨噬细胞)、T细胞和调节性T淋巴细胞(Tregs)的免疫微环境标志物(CD68、CD163、MARCO、CSF1R、CSF1、PD-L1/CD274、SIRPA、CD85A/LILRB3、CD47、IL10、TNFRSF14/HVEM、TNFAIP8、IKAROS、STAT3、NFKB、MAPK、PD-1/PDCD1、BTLA和FOXP3)、细胞凋亡(BCL2、CASP3、CASP8、PARP以及与通路相关的MDM2、E2F1、CDK6、MYB和LMO2)和代谢(ENO3、GGA3)都得到了突出显示。总之,带有免疫肿瘤学标志物的人工智能是一种强大的预测工具。此外,还对近期文献进行了综述。