Suppr超能文献

脑卒中后使用镜像收缩进行上肢功能评估:一项初步研究。

Upper-limb functional assessment after stroke using mirror contraction: A pilot study.

机构信息

State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China.

出版信息

Artif Intell Med. 2020 Jun;106:101877. doi: 10.1016/j.artmed.2020.101877. Epub 2020 May 19.

Abstract

The clinical assessment after stroke depends on the rating scale, usually lack of quantitative feedback such as biomedical signal captured from stroke patients. This study attempts to develop a unified assessment framework for persons after stroke via surface electromyography (sEMG) bias from bilateral limbs, based on four types of selected movements, namely forward lift arm, lateral lift arm, forearm internal/external rotation, forearm pronation/supination. Eleven healthy subjects and six stroke patients are recruited to participate in the experiment to perform the bilateral-mirrored paradigm with six channels of sEMG signals recorded from each of their arms. The linear discriminant analysis (LDA), random forest algorithm (RF) and support vector machine (SVM) are adopted, trained and used for stroke patients qualitative recognition. The bilateral bias diagnosis algorithm (BBDA) is developed to evaluate the stroke severity quantitatively based on the similarity index (SI) of the sEMG. The results reveal that: (1) the sEMG feature bias of bilateral arms for stroke patients is different from that of healthy people; (2) the RF and SVM demonstrate a better performance with an average recognition accuracy of 0.92 ± 0.12 and 0.93 ± 0.12 than LDA (0.84 ± 0.20) in distinguishing stroke patients from healthy subjects; (3) there is a strong positive correlation between SI and the Fugl-Meyer score (r = 0.93). These research findings indicate that the dominant qualitative assessment after stroke could be complementary by its counterpart quantitative solutions, and stroke rehabilitation could be automated with less involvement of professional therapists.

摘要

脑卒中后的临床评估取决于评分量表,通常缺乏从脑卒中患者中捕获的生物医学信号等定量反馈。本研究试图通过从双侧肢体采集的表面肌电图(sEMG)偏置,基于四种选定的运动类型(向前抬起手臂、侧向抬起手臂、前臂内/外旋、前臂旋前/旋后),为脑卒中患者开发一个统一的评估框架。11 名健康受试者和 6 名脑卒中患者被招募参与实验,他们的双侧手臂分别记录 6 通道的 sEMG 信号,完成双侧镜像范式。采用线性判别分析(LDA)、随机森林算法(RF)和支持向量机(SVM)进行训练和使用,用于脑卒中患者的定性识别。基于相似指数(SI),开发双侧偏置诊断算法(BBDA)对脑卒中的严重程度进行定量评估。结果表明:(1)脑卒中患者双侧手臂的 sEMG 特征偏置与健康人不同;(2)RF 和 SVM 的表现优于 LDA(0.84 ± 0.20),平均识别准确率分别为 0.92 ± 0.12 和 0.93 ± 0.12;(3)SI 与 Fugl-Meyer 评分之间存在很强的正相关(r = 0.93)。这些研究结果表明,脑卒中后的主导定性评估可以通过其对应的定量解决方案进行补充,并且脑卒中康复可以实现自动化,减少对专业治疗师的依赖。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验